scispace - formally typeset
Open AccessBook

An Introduction to Gravity Currents and Intrusions

Reads0
Chats0
TLDR
In this article, the Navier-Stokes equations for high-Re flows were applied to a two-layer model of the Boussinesq system in dimensionless form.
Abstract
Introduction Classification The Navier-Stokes equations Non-stratified ambient currents Shallow-water (SW) formulation for high-Re flows Motion of the interface and the continuity equation One-layer model A useful transformation The full behavior by numerical solution Dam-break stage Similarity solution The validity of the inviscid approximation The steady-state current and nose jump conditions Benjamin's analysis Jump condition Box models for 2D geometry Fixed volume current with inertial-buoyancy balance Inflow volume change Two-layer SW model Introduction The governing equations Boussinesq system in dimensionless form Jumps of interface for H < 2 Energy and work in a two-layer model Axisymmetric currents, SW formulation Governing equations A useful transformation The full behavior by numerical solution Dam-break stage Similarity solution The validity of the inviscid approximation Some comparisons Box models for axisymmetric geometry Fixed volume current with inertial-buoyancy balance Inflow volume change Effects of rotation Axisymmetric case Rotating channel Buoyancy decays: particle-driven, porous boundary, and entrainment Particle-driven currents Axisymmetric particle-driven current Extensions of particle-driven solutions Current over a porous bottom Axisymmetric current over a porous bottom Entrainment Non-Boussinesq systems Introduction Formulation Dam-break and initial slumping motion The transition and self-similar stages Summary Lubrication theory formulation for viscous currents 2D geometry Axisymmetric current Current in a porous medium II Stratified ambient currents and intrusions Continuous density transition Introduction The SW formulation SW results and comparisons with experiments and simulations Dam break Critical speed and nose-wave interaction Similarity solution The validity of the inviscid approximation Axisymmetric and rotating cases SW formulation SW and NS finite-difference results The validity of the inviscid approximation The steady-state current Steady-state flow pattern Results Comparisons and conclusions Intrusions in 2D geometry Introduction Two-layer stratification Linear transition layer Rectangular lock configurations Cylindrical lock in a fully linearly-stratified tank Similarity solution Non-symmetric intrusions Intrusions in axisymmetric geometry Introduction Two-layer stratification Fully linearly-stratified tank, part-depth locks Box models for 2D geometry Fixed volume and inertial-buoyancy balance S = 1, inflow volume change Box models for axisymmetric geometry Fixed volume and inertial-buoyancy balance S = 1, inflow volume change Lubrication theory for viscous currents with S = 1 2D geometry Axisymmetric geometry Energy Introduction 2D geometry Axisymmetric geometry SW equations: characteristics and finite-difference schemes Characteristics Numerical solution of the SW equations Navier-Stokes numerical simulations Formulation A finite-difference code Other codes Some useful formulas Leibniz's Theorem Vectors and coordinate systems

read more

Citations
More filters
Journal ArticleDOI

Gravity Currents in the Environment and the Laboratory

TL;DR: Simpson as discussed by the authors discusses both the basic physics and real-world applications of gravity currents and related phenomena such as hydraulic jumps, undular bores, and the spread of buoyant plumes.
Journal ArticleDOI

Modeling Gravity and Turbidity Currents: Computational Approaches and Challenges

TL;DR: This review article provides a detailed review of depth-resolving modeling strategies, including direct numerical simulations (DNS), large-eddy simulations (LES), and Reynolds-averaged Navier–Stokes (RANS) simulations.
Journal ArticleDOI

Interpretation of umbrella cloud growth and morphology: implications for flow regimes of short-lived and long-lived eruptions

TL;DR: In this article, the authors show that the growth of a volcanic umbrella cloud, expressed as the increase of radius with time, proceeds through regimes, dominated by different force balances, and that transition periods between the regimes can be long-lasting, and during these transitions, the spreading rate does not follow a simple power law.
Journal ArticleDOI

Circulation based models for Boussinesq gravity currents

TL;DR: In this article, the front velocity of gravity currents is predicted as a function of their height from mass and momentum balances alone by considering the evolution of interfacial vorticity, without the need for the energy conservation arguments invoked by earlier models.
References
More filters
Book

An Introduction to Fluid Dynamics

TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Journal ArticleDOI

An Introduction to Fluid Dynamics. By G. K. Batchelor. Pp. 615. 75s. (Cambridge.)

TL;DR: In this paper, the Navier-Stokes equation is derived for an inviscid fluid, and a finite difference method is proposed to solve the Euler's equations for a fluid flow in 3D space.
Book

Numerical Recipes in FORTRAN

TL;DR: The Diskette v 2.04, 3.5'' (720k) for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Book

Geophysical Fluid Dynamics

TL;DR: In this article, the authors propose a quasigeostrophic motion of a Stratified Fluid on a Sphere (SFL) on a sphere, which is based on an Inviscid Shallow-Water Theory.
Book

Computational Fluid Mechanics and Heat Transfer

TL;DR: In this paper, a reference record was created on 2005-11-18, modified on 2016-08-08 and used for CFD-based transfert de chaleur.
Related Papers (5)