scispace - formally typeset
Search or ask a question
Book

An introduction to parallel algorithms

01 Oct 1992-
TL;DR: This book provides an introduction to the design and analysis of parallel algorithms, with the emphasis on the application of the PRAM model of parallel computation, with all its variants, to algorithm analysis.
Abstract: Written by an authority in the field, this book provides an introduction to the design and analysis of parallel algorithms. The emphasis is on the application of the PRAM (parallel random access machine) model of parallel computation, with all its variants, to algorithm analysis. Special attention is given to the selection of relevant data structures and to algorithm design principles that have proved to be useful. Features *Uses PRAM (parallel random access machine) as the model for parallel computation. *Covers all essential classes of parallel algorithms. *Rich exercise sets. *Written by a highly respected author within the field. 0201548569B04062001

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article
01 Jan 1997
TL;DR: In this article, an efficient parallel algorithm for constructing a decomposition tree of a given generalized series-parallel (GSP) graph is presented, which takes O(log n) time with C(m, n) processors on a CRCW PRAM, where m is the number of processors required to find connected components of a graph with in edges and n vertices in logarithmic time.
Abstract: Generalized series-parallel (GSP) graphs belong to the class of decomposable graphs which can be represented by their decomposition trees. Given a decomposition tree of a GSP graph, there are many graph-theoretic problems which can be solved efficiently. An efficient parallel algorithm for constructing a decomposition tree of a given GSP graph is presented. It takes O(log n) time with C(m, n) processors on a CRCW PRAM, where C(m, n) is the number of processors required to find connected components of a graph with in edges and n vertices in logarithmic time. Based on our algorithmic results, we also derive some properties for GSP graphs, which may be of interest in and of themselves.

12 citations

Proceedings ArticleDOI
30 Jul 2006
TL;DR: This study demonstrates that the effect of programming model on effort can be directly measured through empirical studies with human subjects and answers the questions under study about can the authors measure the effort in developing a program using these two programming models and can they differentiate the amount of effort for each model.
Abstract: While there are strong beliefs within the community about whether one particular parallel programming model is easier to use than another, there has been little research to analyze these claims empirically. Currently, the most popular paradigm is message-passing, as implemented by the MPI library [1]. However, MPI is considered to be difficult for developing programs, because it forces the programmer to work at a very low level of abstraction. One alternative parallel programming model is the PRAM model, which supports fine-grained parallelism and has a substantial history of algorithmic theory [2]. It is not possible to program current parallel machines using the PRAM model because modern architectures are not designed to support such a model efficiently. However, current trends towards multicore chips suggest that large-scale, fine-grained uniform-memory access parallel machines may soon be feasible. XMT-C is an extension of the C language that supports parallel directives to provide a PRAM-like model to the programmer. A prototype compiler exists that generates code which runs on a simulator for an XMT architecture [3].To better understand how much benefit a PRAM-like model could provide over a message-passing model, we conducted a feasibility study in an academic setting to compare the effort required to solve a particular problem. The questions under study were: can we measure the effort in developing a program using these two programming models and can we differentiate the amount of effort for each model?.The subjects participating in the study were divided up into two groups. One group solved a problem using the MPI library in either C,C++, or Fortran, and the other group solved the problem using XMT-C. The task was to write a function to multiply a sparse matrix with a dense vector. To obtain subjects, we leveraged existing graduate-level parallel programming courses at two different universities: University of California, Santa Barbara (UCSB), and University of Maryland (UMD). At UCSB, the students solved the problem in MPI, and at UMD, the students solved the same problem in XMT-C. The focus of the UCSB class was on developing parallel programs to run on the current generation of architectures, and the students were taught MPI, as well as other models. The focus of the UMD class was parallel algorithms in the PRAM model, and the students were taught XMT-C. The students were assigned to treatment groups by class. The study was integrated into each class, as the problem was a required assignment in each class.Subjects kept track of their effort with a self-reported effort log. We also collected automatic effort data by instrumenting the compilers, which recorded data at each compile. We computed three effort measures: self-reported, instrumented, and combined. Self-reported effort measures are based entirely on effort logs, instrumented effort measures are based entirely on timestamps from the instrumented compilers, and combined effort measures are based on compiler timestamps when the subject is working on the instrumented machine, and self-reported effort when the subject is working off the instrumented machine.The results of this preliminary study answer both of our questions in the positive. In this case, on average, students required less effort to solve the problem using XMT-C compared to MPI. The reduction in mean effort was approximately 50% for all three measures, which was statistically significant at the level of p

12 citations


Cites methods from "An introduction to parallel algorit..."

  • ...One alternative parallel programming model is the PRAM model, which supports fine-grained parallelism and has a substantial history of algorithmic theory [ 2 ]....

    [...]

Journal ArticleDOI
TL;DR: A faster implementation of the tree contraction scheme which takes O(logn·T(n)) time using P(n) processors on an arbitrary CRCW PRAM and can be utilized to solve problems on distance-hereditary graphs.

12 citations

Dissertation
01 Jan 2012
TL;DR: This thesis investigates the power and limits of efficient joint computation, in several computational models: query algorithms, circuits, and Turing machines; significantly improve and extend past results on limits; identify barriers to progress towards better circuit lower bounds for multiple-output operators; and begin an original line of inquiry into the complexity of joint computation.
Abstract: Joint computation is the ubiquitous scenario in which a computer is presented with not one, but many computational tasks to perform. A fundamental question arises: when can we cleverly combine computations, to perform them with greater efficiency or reliability than by tackling them separately? This thesis investigates the power and, especially, the limits of efficient joint computation, in several computational models: query algorithms, circuits, and Turing machines. We significantly improve and extend past results on limits to efficient joint computation for multiple independent tasks; identify barriers to progress towards better circuit lower bounds for multiple-output operators; and begin an original line of inquiry into the complexity of joint computation. In more detail, we make contributions in the following areas: Improved direct product theorems for randomized query complexity: The "direct product problem" seeks to understand how the difficulty of computing a function on each of k independent inputs scales with k. We prove the following direct product theorem (DPT) for query complexity: if every T-query algorithm has success probability at most 1 – e in computing the Boolean function f on input distribution μ, then for α ≤ 1, every αeTk-query algorithm has success probability at most (2αe(1 – e))k in computing the k-fold direct product f ⊗k correctly on k independent inputs from μ. In light of examples due to Shaltiel, this statement gives an essentially optimal tradeoff between the query bound and the error probability. Using this DPT, we show that for an absolute constant α > 0, the worst-case success probability of any αR 2(f)k-query randomized algorithm for f⊗k falls exponentially with k. The best previous statement of this type, due to Klauck, Spalek, and de Wolf, required a query bound of O( bs(f)k). Our proof technique involves defining and analyzing a collection of martingales associated with an algorithm attempting to solve f ⊗k. Our method is quite general and yields a new XOR lemma and threshold DPT for the query model, as well as DPTs for the query complexity of learning tasks, search problems, and tasks involving interaction with dynamic entities. We also give a version of our DPT in which decision tree size is the resource of interest. Joint complexity in the Decision Tree Model: We study the diversity of possible behaviors of the joint computational complexity of a collection f1, …, fk of Boolean functions over a shared input. We focus on the deterministic decision tree model, with depth as the complexity measure; in this model, we prove a result to the effect that the "obvious" constraints on joint computational complexity are essentially the only ones. The proof uses an intriguing new type of cryptographic data structure called a "mystery bin," which we construct using a polynomial separation between deterministic and unambiguous query complexity shown by Savický. We also pose a conjecture in the communication model which, if proved, would extend our result to that model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)

12 citations

Proceedings ArticleDOI
TL;DR: The Graph-Based Benchmark Suite (GBBS) as mentioned in this paper is a set of 20 graph problems that can scale to the largest publicly available real-world graphs using a single machine with a terabyte of RAM.
Abstract: There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).

12 citations

References
More filters
Book
01 Sep 1991
TL;DR: This chapter discusses sorting on a Linear Array with a Systolic and Semisystolic Model of Computation, which automates the very labor-intensive and therefore time-heavy and expensive process of manually sorting arrays.
Abstract: Preface Acknowledgments Notation 1 Arrays and Trees 1.1 Elementary Sorting and Counting 1.1.1 Sorting on a Linear Array Assessing the Performance of the Algorithm Sorting N Numbers with Fewer Than N Processors 1.1.2 Sorting in the Bit Model 1.1.3 Lower Bounds 1.1.4 A Counterexample-Counting 1.1.5 Properties of the Fixed-Connection Network Model 1.2 Integer Arithmetic 1.2.1 Carry-Lookahead Addition 1.2.2 Prefix Computations-Segmented Prefix Computations 1.2.3 Carry-Save Addition 1.2.4 Multiplication and Convolution 1.2.5 Division and Newton Iteration 1.3 Matrix Algorithms 1.3.1 Elementary Matrix Products 1.3.2 Algorithms for Triangular Matrices 1.3.3 Algorithms for Tridiagonal Matrices -Odd-Even Reduction -Parallel Prefix Algorithms 1.3.4 Gaussian Elimination 1.3.5 Iterative Methods -Jacobi Relaxation -Gauss-Seidel Relaxation Finite Difference Methods -Multigrid Methods 1.4 Retiming and Systolic Conversion 1.4.1 A Motivating Example-Palindrome Recognition 1.4.2 The Systolic and Semisystolic Model of Computation 1.4.3 Retiming Semisystolic Networks 1.4.4 Conversion of a Semisystolic Network into a Systolic Network 1.4.5 The Special Case of Broadcasting 1.4.6 Retiming the Host 1.4.7 Design by Systolic Conversion-A Summary 1.5 Graph Algorithms 1.5.1 Transitive Closure 1.5.2 Connected Components 1.5.3 Shortest Paths 1.5.4 Breadth-First Spanning Trees 1.5.5 Minimum Weight Spanning Trees 1.6 Sorting Revisited 1.6.1 Odd-Even Transposition Sort on a Linear Array 1.6.2 A Simple Root-N(log N + 1)-Step Sorting Algorithm 1.6.3 A (3 Root- N + o(Root-N))-Step Sorting Algorithm 1.6.4 A Matching Lower Bound 1.7 Packet Routing 1.7.1 Greedy Algorithms 1.7.2 Average-Case Analysis of Greedy Algorithms -Routing N Packets to Random Destinations -Analysis of Dynamic Routing Problems 1.7.3 Randomized Routing Algorithms 1.7.4 Deterministic Algorithms with Small Queues 1.7.5 An Off-line Algorithm 1.7.6 Other Routing Models and Algorithms 1.8 Image Analysis and Computational Geometry 1.8.1 Component-Labelling Algorithms -Levialdi's Algorithm -An O (Root-N)-Step Recursive Algorithm 1.8.2 Computing Hough Transforms 1.8.3 Nearest-Neighbor Algorithms 1.8.4 Finding Convex Hulls 1.9 Higher-Dimensional Arrays 1.9.1 Definitions and Properties 1.9.2 Matrix Multiplication 1.9.3 Sorting 1.9.4 Packet Routing 1.9.5 Simulating High-Dimensional Arrays on Low-Dimensional Arrays 1.10 problems 1.11 Bibliographic Notes 2 Meshes of Trees 2.1 The Two-Dimensional Mesh of Trees 2.1.1 Definition and Properties 2.1.2 Recursive Decomposition 2.1.3 Derivation from KN,N 2.1.4 Variations 2.1.5 Comparison With the Pyramid and Multigrid 2.2 Elementary O(log N)-Step Algorithms 2.2.1 Routing 2.2.2 Sorting 2.2.3 Matrix-Vector Multiplication 2.2.4 Jacobi Relaxation 2.2.5 Pivoting 2.2.6 Convolution 2.2.7 Convex Hull 2.3 Integer Arithmetic 2.3.1 Multiplication 2.3.2 Division and Chinese Remaindering 2.3.3 Related Problems -Iterated Products -Rooting Finding 2.4 Matrix Algorithms 2.4.1 The Three-Dimensional Mesh of Trees 2.4.2 Matrix Multiplication 2.4.3 Inverting Lower Triangular Matrices 2.4.4 Inverting Arbitrary Matrices -Csanky's Algorithm -Inversion by Newton Iteration 2.4.5 Related Problems 2.5 Graph Algorithms 2.5.1 Minimum-Weight Spanning Trees 2.5.2 Connected Components 2.5.3 Transitive Closure 2.5.4 Shortest Paths 2.5.5 Matching Problems 2.6 Fast Evaluation of Straight-Line Code 2.6.1 Addition and Multiplication Over a Semiring 2.6.2 Extension to Codes with Subtraction and Division 2.6.3 Applications 2.7 Higher-Dimensional meshes of Trees 2.7.1 Definitions and Properties 2.7.2 The Shuffle-Tree Graph 2.8 Problems 2.9 Bibliographic Notes 3 Hypercubes and Related Networks 3.1 The Hypercube 3.1.1 Definitions and Properties 3.1.2 Containment of Arrays -Higher-Dimensional Arrays -Non-Power-of-2 Arrays 3.1.3 Containment of Complete Binary Trees 3.1.4 Embeddings of Arbitrary Binary Trees -Embeddings with Dilation 1 and Load O(M over N + log N) -Embeddings with Dilation O(1) and Load O (M over N + 1) -A Review of One-Error-Correcting Codes -Embedding Plog N into Hlog N 3.1.5 Containment of Meshes of Trees 3.1.6 Other Containment Results 3.2 The Butterfly, Cube-Connected-Cycles , and Benes Network 3.2.1 Definitions and Properties 3.2.2 Simulation of Arbitrary Networks 3.2.3 Simulation of Normal Hypercube Algorithms 3.2.4 Some Containment and Simulation Results 3.3 The Shuffle-Exchange and de Bruijn Graphs 3.3.1 Definitions and Properties 3.3.2 The Diaconis Card Tricks 3.3.3 Simulation of Normal Hypercube Algorithms 3.3.4 Similarities with the Butterfly 3.3.5 Some Containment and Simulation Results 3.4 Packet-Routing Algorithms 3.4.1 Definitions and Routing Models 3.4.2 Greedy Routing Algorithms and Worst-Case Problems 3.4.3 Packing, Spreading, and Monotone Routing Problems -Reducing a Many-to-Many Routing Problem to a Many-to-One Routing Problem -Reducing a Routing Problem to a Sorting Problem 3.4.4 The Average-Case Behavior of the Greedy Algorithm -Bounds on Congestion -Bounds on Running Time -Analyzing Non-Predictive Contention-Resolution Protocols 3.4.5 Converting Worst-Case Routing Problems into Average-Case Routing Problems -Hashing -Randomized Routing 3.4.6 Bounding Queue Sizes -Routing on Arbitrary Levelled Networks 3.4.7 Routing with Combining 3.4.8 The Information Dispersal Approach to Routing -Using Information Dispersal to Attain Fault-Tolerance -Finite Fields and Coding Theory 3.4.9 Circuit-Switching Algorithms 3.5 Sorting 3.5.1 Odd-Even Merge Sort -Constructing a Sorting Circuit with Depth log N(log N +1)/2 3.5.2 Sorting Small Sets 3.5.3 A Deterministic O(log N log log N)-Step Sorting Algorithm 3.5.4 Randomized O(log N)-Step Sorting Algorithms -A Circuit with Depth 7.45 log N that Usually Sorts 3.6 Simulating a Parallel Random Access Machine 3.6.1 PRAM Models and Shared Memories 3.6.2 Randomized Simulations Based on Hashing 3.6.3 Deterministic Simulations using Replicated Data 3.6.4 Using Information Dispersal to Improve Performance 3.7 The Fast Fourier Transform 3.7.1 The Algorithm 3.7.2 Implementation on the Butterfly and Shuffle-Exchange Graph 3.7.3 Application to Convolution and Polynomial Arithmetic 3.7.4 Application to Integer Multiplication 3.8 Other Hypercubic Networks 3.8.1 Butterflylike Networks -The Omega Network -The Flip Network -The Baseline and Reverse Baseline Networks -Banyan and Delta Networks -k-ary Butterflies 3.8.2 De Bruijn-Type Networks -The k-ary de Bruijn Graph -The Generalized Shuffle-Exchange Graph 3.9 Problems 3.10 Bibliographic Notes Bibliography Index Lemmas, Theorems, and Corollaries Author Index Subject Index

2,895 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Multiprocessorbased computers have been around for decades and various types of computer architectures [2] have been implemented in hardware throughout the years with different types of advantages/performance gains depending on the application....

    [...]

  • ...Every location in the array represents a node of the tree: T [1] is the root, with children at T [2] and T [3]....

    [...]

  • ...The text by [2] is a good start as it contains a comprehensive description of algorithms and different architecture topologies for the network model (tree, hypercube, mesh, and butterfly)....

    [...]

Book
01 Jan 1984
TL;DR: The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.
Abstract: The book is intended as a text to support two semesters of courses in computer architecture at the college senior and graduate levels. There are excellent problems for students at the end of each chapter. The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.

1,410 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Parallel architectures have been described in several books (see, for example, [18, 29])....

    [...]

Journal ArticleDOI
TL;DR: The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.
Abstract: Parallel computers with tens of thousands of processors are typically programmed in a data parallel style, as opposed to the control parallel style used in multiprocessing. The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.

1,000 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Recent work on the mapping of PRAM algorithms on bounded-degree networks is described in [3,13,14, 20, 25], Our presentation on the communication complexity of the matrix-multiplication problem in the sharedmemory model is taken from [1], Data-parallel algorithms are described in [15]....

    [...]

Proceedings ArticleDOI
01 May 1978
TL;DR: A model of computation based on random access machines operating in parallel and sharing a common memory is presented and can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines.
Abstract: A model of computation based on random access machines operating in parallel and sharing a common memory is presented. The computational power of this model is related to that of traditional models. In particular, deterministic parallel RAM's can accept in polynomial time exactly the sets accepted by polynomial tape bounded Turing machines; nondeterministic RAM's can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines. Similar results hold for other classes. The effect of limiting the size of the common memory is also considered.

951 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Rigorous descriptions of shared-memory models were introduced later in [11,12]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Abstract: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log2n + 10(n - 1)/p using p ≥ 1 processors which can independently perform arithmetic operations in unit time. This bound is within a constant factor of the best possible. A sharper result is given for expressions without the division operation, and the question of numerical stability is discussed.

864 citations


"An introduction to parallel algorit..." refers methods in this paper

  • ...The WT scheduling principle is derived from a theorem in [7], In the literature, this principle is commonly referred to as Brent's theorem or Brent's scheduling principle....

    [...]