scispace - formally typeset
Search or ask a question
Book

An introduction to parallel algorithms

01 Oct 1992-
TL;DR: This book provides an introduction to the design and analysis of parallel algorithms, with the emphasis on the application of the PRAM model of parallel computation, with all its variants, to algorithm analysis.
Abstract: Written by an authority in the field, this book provides an introduction to the design and analysis of parallel algorithms. The emphasis is on the application of the PRAM (parallel random access machine) model of parallel computation, with all its variants, to algorithm analysis. Special attention is given to the selection of relevant data structures and to algorithm design principles that have proved to be useful. Features *Uses PRAM (parallel random access machine) as the model for parallel computation. *Covers all essential classes of parallel algorithms. *Rich exercise sets. *Written by a highly respected author within the field. 0201548569B04062001

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 1998
TL;DR: This chapter is concerned with designing algorithms for machines in which the processors are connected to each other by some simple, systematic, interconnection pattern, and an abstract parallel model of computation, the PRAM, is defined.
Abstract: This chapter is concerned with designing algorithms for machines constructed from multiple processors. In particular, we discuss algorithms for machines in which the processors are connected to each other by some simple, systematic, interconnection pattern. For example, consider a chess board, where each square represents a processor (for example, a processor similar to one in a home computer) and every generic processor is connected to its 4 neighboring processors (those to the north, south, east, and west). This is an example of a mesh computer, a network of processors that is important for both theoretical and practical reasons. The focus of this chapter is on algorithmic techniques. Initially, we define some basic terminology that is used to discuss parallel algorithms and parallel architectures. Following this introductory material, we define a variety of interconnection networks, including the mesh (chess board), which are used to allow processors to communicate with each other. We also define an abstract parallel model of computation, the PRAM, where processors communicate with memory instead of with each other. We then discuss several parallel programming paradigms, including the use of high-level data movement operations, divide-and-conquer, pipelining, and master-slave. Finally, we discuss the problem of mapping the structure of an inherently parallel problem onto a target parallel architecture. This mapping problem can arise in a variety of ways, and with a wide range of problem structures. In some cases, finding a good mapping is quite straightforward, but in other cases it is a computationally intractable NP-complete problem.

11 citations

Journal ArticleDOI
TL;DR: A more efficient topological sort algorithm is proposed on the same LARPBS model and it is shown that the problem can be solved in O(log N) time by using N3/log N processors.
Abstract: Topological sort of an acyclic graph has many applications such as job scheduling and network analysis. Due to its importance, it has been tackled on many models. Dekel et al. l3r, proposed an algorithm for solving the problem in O(log2 N) time on the hypercube or shuffle-exchange networks with O(N3) processors. Chaudhuri l2r, gave an O(log N) algorithm using O(N3) processors on a CRCW PRAM model. On the LARPBS (Linear Arrays with a Reconfigurable Pipelined Bus System) model, Li et al. l5r showed that the problem for a weighted directed graph with N vertices can be solved in O(log N) time by using N3 processors. In this paper, a more efficient topological sort algorithm is proposed on the same LARPBS model. We show that the problem can be solved in O(log N) time by using N3/log N processors. We show that the algorithm has better time and processor complexities than the best algorithm on the hypercube, and has the same time complexity but better processor complexity than the best algorithm on the CRCW PRAM model.

11 citations


Cites background from "An introduction to parallel algorit..."

  • ...Topological sort has many applications in various job scheduling, network analysis, and other areas [1, 4]....

    [...]

  • ...The topological sort of an acyclic graph is to find a linear ordering for the vertices of the graph, such that if i j is an edge of the graph, then i appears before j in the ordering [4]....

    [...]

Journal ArticleDOI
TL;DR: An efficient parallel algorithm to solve the single function coarsest partition problem and efficient parallel algorithms to find a minimal starting point of a circular string with respect to lexicographic ordering and to sort lexicographically a list of strings of different lengths are presented.

11 citations

Journal ArticleDOI
TL;DR: The proposed solution takes a constant number of supersteps, and achieves optimal communication time if the string to be searched is longer than p2 , and reduces and balance the communication cost.
Abstract: Given a text string T[1,n] , the multistringsearchproblem consists of determining which of k pattern strings {X 1 [1,m], X 2 [1,m], . . ., X k [1,m]} , provided on-line, occur in T . We study this problem in the BSP model [27], and then extend our analysis to other coarse-grained parallel computational models. We refer to the relevant and difficult case of long patterns, that is m≥p , where p is the number of available processors, and provide an optimal result with respect to both computation and communication times, attaining a constant number of supersteps. We then study single string search (i.e., k=1 ), and show how the multistring search algorithm can be employed to speed up the process and balance the communication cost. The proposed solution takes a constant number of supersteps, and achieves optimal communication time if the string to be searched is longer than p 2 . Our results are based on the distribution of a proper data structure among the p processors, to reduce and balance the communication cost. We also indicate how short patterns can be efficiently dealt with, through a completely different algorithmic approach.

11 citations


Cites background or methods from "An introduction to parallel algorit..."

  • ...Several techniques for PRAM fast string search have been proposed (e.g., see [1], [3], [16], [ 19 ], and [25])....

    [...]

  • ...We now study the problem of searching for one pattern string X in the text T [1; n]. Various CRCW PRAM parallel solutions are known (e.g., see [3], [16], and [ 19 ]), but not one that accounts for communication cost....

    [...]

Proceedings ArticleDOI
01 Dec 2010
TL;DR: This work presents a GPU specific implementation of Discrete Range Searching with an optimal space-time trade off, and suggests that most graph algorithms which focus on using least common ancestor, can easily be enabled on the GPU based on range minima primitive.
Abstract: Graphics processing units provide a large computational power at a very low price which position them as an ubiquitous accelerator. Efficient primitives that can expand the r ange of operations performed on the GPU are thus important. Discrete Range Searching(DRS) is one such primitive with direct applications to string processing, document and text retrieval systems, and least common ancestor queries. In this work, we present a GPU specific implementation of DRS with an optimal space-time trade off. Toward this end, we also present GPU amenable succinct representations and discuss limitations on the GPU. Our method uses 7.5 bits of additional space per element. The speedup achieved by our method is in the range of 20–25 for preprocessing, and 25–35 for batch querying over a sequential implementation. Compared to an 8-threaded implementation, our methods obtain a speedup of 6–8. We study applications of the DRS on the GPU. Also, we suggest that most graph algorithms which focus on using least common ancestor, can easily be enabled on the GPU based on range minima primitive. Beyond this, we show applications of DRS in string querying and tree queries, and suggest how DRS can be helpful in implementing tree based graph algorithms on the GPU.

11 citations


Cites methods from "An introduction to parallel algorit..."

  • ...al [14] and the scan primitive [15] can be used to preprocess a given tree to generate the required traversal of the tree [12]....

    [...]

References
More filters
Book
01 Sep 1991
TL;DR: This chapter discusses sorting on a Linear Array with a Systolic and Semisystolic Model of Computation, which automates the very labor-intensive and therefore time-heavy and expensive process of manually sorting arrays.
Abstract: Preface Acknowledgments Notation 1 Arrays and Trees 1.1 Elementary Sorting and Counting 1.1.1 Sorting on a Linear Array Assessing the Performance of the Algorithm Sorting N Numbers with Fewer Than N Processors 1.1.2 Sorting in the Bit Model 1.1.3 Lower Bounds 1.1.4 A Counterexample-Counting 1.1.5 Properties of the Fixed-Connection Network Model 1.2 Integer Arithmetic 1.2.1 Carry-Lookahead Addition 1.2.2 Prefix Computations-Segmented Prefix Computations 1.2.3 Carry-Save Addition 1.2.4 Multiplication and Convolution 1.2.5 Division and Newton Iteration 1.3 Matrix Algorithms 1.3.1 Elementary Matrix Products 1.3.2 Algorithms for Triangular Matrices 1.3.3 Algorithms for Tridiagonal Matrices -Odd-Even Reduction -Parallel Prefix Algorithms 1.3.4 Gaussian Elimination 1.3.5 Iterative Methods -Jacobi Relaxation -Gauss-Seidel Relaxation Finite Difference Methods -Multigrid Methods 1.4 Retiming and Systolic Conversion 1.4.1 A Motivating Example-Palindrome Recognition 1.4.2 The Systolic and Semisystolic Model of Computation 1.4.3 Retiming Semisystolic Networks 1.4.4 Conversion of a Semisystolic Network into a Systolic Network 1.4.5 The Special Case of Broadcasting 1.4.6 Retiming the Host 1.4.7 Design by Systolic Conversion-A Summary 1.5 Graph Algorithms 1.5.1 Transitive Closure 1.5.2 Connected Components 1.5.3 Shortest Paths 1.5.4 Breadth-First Spanning Trees 1.5.5 Minimum Weight Spanning Trees 1.6 Sorting Revisited 1.6.1 Odd-Even Transposition Sort on a Linear Array 1.6.2 A Simple Root-N(log N + 1)-Step Sorting Algorithm 1.6.3 A (3 Root- N + o(Root-N))-Step Sorting Algorithm 1.6.4 A Matching Lower Bound 1.7 Packet Routing 1.7.1 Greedy Algorithms 1.7.2 Average-Case Analysis of Greedy Algorithms -Routing N Packets to Random Destinations -Analysis of Dynamic Routing Problems 1.7.3 Randomized Routing Algorithms 1.7.4 Deterministic Algorithms with Small Queues 1.7.5 An Off-line Algorithm 1.7.6 Other Routing Models and Algorithms 1.8 Image Analysis and Computational Geometry 1.8.1 Component-Labelling Algorithms -Levialdi's Algorithm -An O (Root-N)-Step Recursive Algorithm 1.8.2 Computing Hough Transforms 1.8.3 Nearest-Neighbor Algorithms 1.8.4 Finding Convex Hulls 1.9 Higher-Dimensional Arrays 1.9.1 Definitions and Properties 1.9.2 Matrix Multiplication 1.9.3 Sorting 1.9.4 Packet Routing 1.9.5 Simulating High-Dimensional Arrays on Low-Dimensional Arrays 1.10 problems 1.11 Bibliographic Notes 2 Meshes of Trees 2.1 The Two-Dimensional Mesh of Trees 2.1.1 Definition and Properties 2.1.2 Recursive Decomposition 2.1.3 Derivation from KN,N 2.1.4 Variations 2.1.5 Comparison With the Pyramid and Multigrid 2.2 Elementary O(log N)-Step Algorithms 2.2.1 Routing 2.2.2 Sorting 2.2.3 Matrix-Vector Multiplication 2.2.4 Jacobi Relaxation 2.2.5 Pivoting 2.2.6 Convolution 2.2.7 Convex Hull 2.3 Integer Arithmetic 2.3.1 Multiplication 2.3.2 Division and Chinese Remaindering 2.3.3 Related Problems -Iterated Products -Rooting Finding 2.4 Matrix Algorithms 2.4.1 The Three-Dimensional Mesh of Trees 2.4.2 Matrix Multiplication 2.4.3 Inverting Lower Triangular Matrices 2.4.4 Inverting Arbitrary Matrices -Csanky's Algorithm -Inversion by Newton Iteration 2.4.5 Related Problems 2.5 Graph Algorithms 2.5.1 Minimum-Weight Spanning Trees 2.5.2 Connected Components 2.5.3 Transitive Closure 2.5.4 Shortest Paths 2.5.5 Matching Problems 2.6 Fast Evaluation of Straight-Line Code 2.6.1 Addition and Multiplication Over a Semiring 2.6.2 Extension to Codes with Subtraction and Division 2.6.3 Applications 2.7 Higher-Dimensional meshes of Trees 2.7.1 Definitions and Properties 2.7.2 The Shuffle-Tree Graph 2.8 Problems 2.9 Bibliographic Notes 3 Hypercubes and Related Networks 3.1 The Hypercube 3.1.1 Definitions and Properties 3.1.2 Containment of Arrays -Higher-Dimensional Arrays -Non-Power-of-2 Arrays 3.1.3 Containment of Complete Binary Trees 3.1.4 Embeddings of Arbitrary Binary Trees -Embeddings with Dilation 1 and Load O(M over N + log N) -Embeddings with Dilation O(1) and Load O (M over N + 1) -A Review of One-Error-Correcting Codes -Embedding Plog N into Hlog N 3.1.5 Containment of Meshes of Trees 3.1.6 Other Containment Results 3.2 The Butterfly, Cube-Connected-Cycles , and Benes Network 3.2.1 Definitions and Properties 3.2.2 Simulation of Arbitrary Networks 3.2.3 Simulation of Normal Hypercube Algorithms 3.2.4 Some Containment and Simulation Results 3.3 The Shuffle-Exchange and de Bruijn Graphs 3.3.1 Definitions and Properties 3.3.2 The Diaconis Card Tricks 3.3.3 Simulation of Normal Hypercube Algorithms 3.3.4 Similarities with the Butterfly 3.3.5 Some Containment and Simulation Results 3.4 Packet-Routing Algorithms 3.4.1 Definitions and Routing Models 3.4.2 Greedy Routing Algorithms and Worst-Case Problems 3.4.3 Packing, Spreading, and Monotone Routing Problems -Reducing a Many-to-Many Routing Problem to a Many-to-One Routing Problem -Reducing a Routing Problem to a Sorting Problem 3.4.4 The Average-Case Behavior of the Greedy Algorithm -Bounds on Congestion -Bounds on Running Time -Analyzing Non-Predictive Contention-Resolution Protocols 3.4.5 Converting Worst-Case Routing Problems into Average-Case Routing Problems -Hashing -Randomized Routing 3.4.6 Bounding Queue Sizes -Routing on Arbitrary Levelled Networks 3.4.7 Routing with Combining 3.4.8 The Information Dispersal Approach to Routing -Using Information Dispersal to Attain Fault-Tolerance -Finite Fields and Coding Theory 3.4.9 Circuit-Switching Algorithms 3.5 Sorting 3.5.1 Odd-Even Merge Sort -Constructing a Sorting Circuit with Depth log N(log N +1)/2 3.5.2 Sorting Small Sets 3.5.3 A Deterministic O(log N log log N)-Step Sorting Algorithm 3.5.4 Randomized O(log N)-Step Sorting Algorithms -A Circuit with Depth 7.45 log N that Usually Sorts 3.6 Simulating a Parallel Random Access Machine 3.6.1 PRAM Models and Shared Memories 3.6.2 Randomized Simulations Based on Hashing 3.6.3 Deterministic Simulations using Replicated Data 3.6.4 Using Information Dispersal to Improve Performance 3.7 The Fast Fourier Transform 3.7.1 The Algorithm 3.7.2 Implementation on the Butterfly and Shuffle-Exchange Graph 3.7.3 Application to Convolution and Polynomial Arithmetic 3.7.4 Application to Integer Multiplication 3.8 Other Hypercubic Networks 3.8.1 Butterflylike Networks -The Omega Network -The Flip Network -The Baseline and Reverse Baseline Networks -Banyan and Delta Networks -k-ary Butterflies 3.8.2 De Bruijn-Type Networks -The k-ary de Bruijn Graph -The Generalized Shuffle-Exchange Graph 3.9 Problems 3.10 Bibliographic Notes Bibliography Index Lemmas, Theorems, and Corollaries Author Index Subject Index

2,895 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Multiprocessorbased computers have been around for decades and various types of computer architectures [2] have been implemented in hardware throughout the years with different types of advantages/performance gains depending on the application....

    [...]

  • ...Every location in the array represents a node of the tree: T [1] is the root, with children at T [2] and T [3]....

    [...]

  • ...The text by [2] is a good start as it contains a comprehensive description of algorithms and different architecture topologies for the network model (tree, hypercube, mesh, and butterfly)....

    [...]

Book
01 Jan 1984
TL;DR: The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.
Abstract: The book is intended as a text to support two semesters of courses in computer architecture at the college senior and graduate levels. There are excellent problems for students at the end of each chapter. The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.

1,410 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Parallel architectures have been described in several books (see, for example, [18, 29])....

    [...]

Journal ArticleDOI
TL;DR: The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.
Abstract: Parallel computers with tens of thousands of processors are typically programmed in a data parallel style, as opposed to the control parallel style used in multiprocessing. The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.

1,000 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Recent work on the mapping of PRAM algorithms on bounded-degree networks is described in [3,13,14, 20, 25], Our presentation on the communication complexity of the matrix-multiplication problem in the sharedmemory model is taken from [1], Data-parallel algorithms are described in [15]....

    [...]

Proceedings ArticleDOI
01 May 1978
TL;DR: A model of computation based on random access machines operating in parallel and sharing a common memory is presented and can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines.
Abstract: A model of computation based on random access machines operating in parallel and sharing a common memory is presented. The computational power of this model is related to that of traditional models. In particular, deterministic parallel RAM's can accept in polynomial time exactly the sets accepted by polynomial tape bounded Turing machines; nondeterministic RAM's can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines. Similar results hold for other classes. The effect of limiting the size of the common memory is also considered.

951 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Rigorous descriptions of shared-memory models were introduced later in [11,12]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Abstract: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log2n + 10(n - 1)/p using p ≥ 1 processors which can independently perform arithmetic operations in unit time. This bound is within a constant factor of the best possible. A sharper result is given for expressions without the division operation, and the question of numerical stability is discussed.

864 citations


"An introduction to parallel algorit..." refers methods in this paper

  • ...The WT scheduling principle is derived from a theorem in [7], In the literature, this principle is commonly referred to as Brent's theorem or Brent's scheduling principle....

    [...]