scispace - formally typeset
Search or ask a question
Book

An introduction to parallel algorithms

01 Oct 1992-
TL;DR: This book provides an introduction to the design and analysis of parallel algorithms, with the emphasis on the application of the PRAM model of parallel computation, with all its variants, to algorithm analysis.
Abstract: Written by an authority in the field, this book provides an introduction to the design and analysis of parallel algorithms. The emphasis is on the application of the PRAM (parallel random access machine) model of parallel computation, with all its variants, to algorithm analysis. Special attention is given to the selection of relevant data structures and to algorithm design principles that have proved to be useful. Features *Uses PRAM (parallel random access machine) as the model for parallel computation. *Covers all essential classes of parallel algorithms. *Rich exercise sets. *Written by a highly respected author within the field. 0201548569B04062001

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
21 May 2018
TL;DR: Heterogeneous sorting for input data that exceeds GPU global memory capacity is examined, and it is found that host-side bottlenecks also need to be mitigated to fully exploit heterogeneous architectures.
Abstract: We examine heterogeneous sorting for input data that exceeds GPU global memory capacity. Applications that require significant communication between the host and GPU often need to obviate communication overheads to achieve performance gains over parallel CPU-only algorithms. We advance several optimizations to reduce the host-GPU communication bottleneck, and find that host-side bottlenecks also need to be mitigated to fully exploit heterogeneous architectures. We demonstrate this by comparing our work to end-to-end response time calculations from the literature. Our approaches mitigate several heterogeneous sorting bottlenecks, as demonstrated on single- and dual-GPU platforms. We achieve speedups up to 3.47x over the parallel reference implementation on the CPU. The current path to exascale requires heterogeneous architectures. As such, our work encourages future research in this direction for heterogeneous sorting in the multi-GPU NVLink era.

4 citations


Cites background from "An introduction to parallel algorit..."

  • ...See [9] for an overview of these algorithms....

    [...]

  • ...When sorting datasets on keys of primitive datatypes, radix sort provides the best asymptotic performance [9] and...

    [...]

Journal ArticleDOI
Jop F. Sibeyn1
TL;DR: This work focuses on meshes, but most of the ideas are more general, and based on the idea of repeatedly removing the complement of a ruling set, which is considered for parallel computers which communicate through an interconnection network.
Abstract: The list-ranking problem is considered for parallel computers which communicate through an interconnection network. The algorithms are based on the idea of repeatedly removing the complement of a ruling set. By specific refinements and detailed analysis, earlier results are improved considerably. We concentrate on meshes, but most of the ideas are more general. Each PU holds $k \geq 1$ nodes of a set of linked lists. For the case $k = 1$ , on two-dimensional meshes, the deterministic version takes $105 \cdot n$ steps; the randomized version $80 \cdot n$ steps. Extensions for larger $k$ , require $31 \cdot k \cdot n$ and $10 \cdot k \cdot n$ , steps respectively.

4 citations


Cites methods from "An introduction to parallel algorit..."

  • ...Also the Euler-tour technique (see [4, 7 ]), which is of outstanding importance in the theory of parallel computation, involves ranking lists....

    [...]

  • ...A detailed description of this algorithm and definitions of the technical terms are given in [ 7 ]....

    [...]

  • ...Hereafter, for all p, suc(p) gives the final node of the list of p. Any introductory book on parallel algorithms, for example [ 7 ], gives a proof of this....

    [...]

Proceedings ArticleDOI
19 Apr 1995
TL;DR: Two new parallel algorithms both using less than log/sup 2/ n time are presented, one of which uses only a sublinear number of processors, yet retains the time complexity of the fastest existing algorithm.
Abstract: Finding the connected components of a graph is a basic computational problem. In recent years, there were several exciting results in breaking the log/sup 2/ n-time barrier to finding connected components on parallel machines using shared memory without concurrent-write capability. This paper further presents two new parallel algorithms both using less than log/sup 2/ n time. The merit of the first algorithm is that it uses only a sublinear number of processors, yet retains the time complexity of the fastest existing algorithm. The second algorithm is slightly slower but its work (i.e., the time-processor product) is closer to optimal than all previous algorithms using less than log/sup 2/ n time. >

4 citations


Cites methods from "An introduction to parallel algorit..."

  • ...For instance, those older algorithms [6, 3, 71 can perform the partitioning in O(1ogn) time using n + m EREW processors and the number of iterations can be bounded by O(1ogn) [ 9 ], hence they can find connected components using O(log2 n) time and O((n + m)log2 n) work....

    [...]

  • ...Details of the model can be found in JSJg’s book [ 9 ] or the survey by Karp and Ramachandran [13]....

    [...]

Journal ArticleDOI
TL;DR: This paper studies the family of life-like freezing CA, which is a family of two-dimensional two-state FCA that generalize the freezing version of the game of life, known as life without death, and shows that almost all of them can be solved in NC, except for one rule for which the problem is NP-complete.
Abstract: In this paper we study the family of freezing cellular automata (FCA) in the context of asynchronous updating schemes. A cellular automaton is called freezing if there exists an order of its states, and the transitions are only allowed to go from a lower to a higher state. A cellular automaton is asynchronous if at each time-step only one cell is updated. We define the problem AsyncUnstability , which consists in deciding there exists a sequential updating scheme that changes the state of a given cell. We begin showing that AsyncUnstability is in NL for any one-dimensional FCA. Then we focus on the family of life-like freezing CA (LFCA). We study the complexity of AsyncUnstability for all LFCA in the triangular and square grids, showing that almost all of them can be solved in NC, except for one rule for which the problem is NP-Complete.

4 citations

01 Jan 1996
TL;DR: Work-optimal and polylogarithmic time parallel algorithms for the normalized edit distance problem were proposed in this paper, which is the minimum quotient of the sum of the costs of edit operations transforming X into Y by the length of the edit path corresponding to those edit operations.
Abstract: We give work-optimal and polylogarithmic time parallel algorithms for solving the normalized edit distance problem. The normalized edit distance between two strings X and Y with lengths n 2 m is the minimum quotient of the sum of the costs of edit operations transforming X into Y by the length of the edit path corresponding to those edit operations. Marzal and Vidal proposed a sequential algorithm with a time complexity of O(nm2). We show that this algorithm can be parallelized work-optimally on an array of n (or m) processors, and on a mesh of n x m processors. We then propose a sublinear time algorithm that is almost work-optimal: using O(mn1.75) processors, the time complexity of the algorithm is O(n0.75 log n) and the total numberof operations is O(mn2.5 log n). This algorithm runs on a CREW PRAM, but is likely to work an weaker PRAM models and hypercubes with minor modijications. Finally, we present a polylogarithmic O(log2 n) time algorithm based on matrix multiplication which runs on a O(n6 / log n) processor hypercube.

4 citations

References
More filters
Book
01 Sep 1991
TL;DR: This chapter discusses sorting on a Linear Array with a Systolic and Semisystolic Model of Computation, which automates the very labor-intensive and therefore time-heavy and expensive process of manually sorting arrays.
Abstract: Preface Acknowledgments Notation 1 Arrays and Trees 1.1 Elementary Sorting and Counting 1.1.1 Sorting on a Linear Array Assessing the Performance of the Algorithm Sorting N Numbers with Fewer Than N Processors 1.1.2 Sorting in the Bit Model 1.1.3 Lower Bounds 1.1.4 A Counterexample-Counting 1.1.5 Properties of the Fixed-Connection Network Model 1.2 Integer Arithmetic 1.2.1 Carry-Lookahead Addition 1.2.2 Prefix Computations-Segmented Prefix Computations 1.2.3 Carry-Save Addition 1.2.4 Multiplication and Convolution 1.2.5 Division and Newton Iteration 1.3 Matrix Algorithms 1.3.1 Elementary Matrix Products 1.3.2 Algorithms for Triangular Matrices 1.3.3 Algorithms for Tridiagonal Matrices -Odd-Even Reduction -Parallel Prefix Algorithms 1.3.4 Gaussian Elimination 1.3.5 Iterative Methods -Jacobi Relaxation -Gauss-Seidel Relaxation Finite Difference Methods -Multigrid Methods 1.4 Retiming and Systolic Conversion 1.4.1 A Motivating Example-Palindrome Recognition 1.4.2 The Systolic and Semisystolic Model of Computation 1.4.3 Retiming Semisystolic Networks 1.4.4 Conversion of a Semisystolic Network into a Systolic Network 1.4.5 The Special Case of Broadcasting 1.4.6 Retiming the Host 1.4.7 Design by Systolic Conversion-A Summary 1.5 Graph Algorithms 1.5.1 Transitive Closure 1.5.2 Connected Components 1.5.3 Shortest Paths 1.5.4 Breadth-First Spanning Trees 1.5.5 Minimum Weight Spanning Trees 1.6 Sorting Revisited 1.6.1 Odd-Even Transposition Sort on a Linear Array 1.6.2 A Simple Root-N(log N + 1)-Step Sorting Algorithm 1.6.3 A (3 Root- N + o(Root-N))-Step Sorting Algorithm 1.6.4 A Matching Lower Bound 1.7 Packet Routing 1.7.1 Greedy Algorithms 1.7.2 Average-Case Analysis of Greedy Algorithms -Routing N Packets to Random Destinations -Analysis of Dynamic Routing Problems 1.7.3 Randomized Routing Algorithms 1.7.4 Deterministic Algorithms with Small Queues 1.7.5 An Off-line Algorithm 1.7.6 Other Routing Models and Algorithms 1.8 Image Analysis and Computational Geometry 1.8.1 Component-Labelling Algorithms -Levialdi's Algorithm -An O (Root-N)-Step Recursive Algorithm 1.8.2 Computing Hough Transforms 1.8.3 Nearest-Neighbor Algorithms 1.8.4 Finding Convex Hulls 1.9 Higher-Dimensional Arrays 1.9.1 Definitions and Properties 1.9.2 Matrix Multiplication 1.9.3 Sorting 1.9.4 Packet Routing 1.9.5 Simulating High-Dimensional Arrays on Low-Dimensional Arrays 1.10 problems 1.11 Bibliographic Notes 2 Meshes of Trees 2.1 The Two-Dimensional Mesh of Trees 2.1.1 Definition and Properties 2.1.2 Recursive Decomposition 2.1.3 Derivation from KN,N 2.1.4 Variations 2.1.5 Comparison With the Pyramid and Multigrid 2.2 Elementary O(log N)-Step Algorithms 2.2.1 Routing 2.2.2 Sorting 2.2.3 Matrix-Vector Multiplication 2.2.4 Jacobi Relaxation 2.2.5 Pivoting 2.2.6 Convolution 2.2.7 Convex Hull 2.3 Integer Arithmetic 2.3.1 Multiplication 2.3.2 Division and Chinese Remaindering 2.3.3 Related Problems -Iterated Products -Rooting Finding 2.4 Matrix Algorithms 2.4.1 The Three-Dimensional Mesh of Trees 2.4.2 Matrix Multiplication 2.4.3 Inverting Lower Triangular Matrices 2.4.4 Inverting Arbitrary Matrices -Csanky's Algorithm -Inversion by Newton Iteration 2.4.5 Related Problems 2.5 Graph Algorithms 2.5.1 Minimum-Weight Spanning Trees 2.5.2 Connected Components 2.5.3 Transitive Closure 2.5.4 Shortest Paths 2.5.5 Matching Problems 2.6 Fast Evaluation of Straight-Line Code 2.6.1 Addition and Multiplication Over a Semiring 2.6.2 Extension to Codes with Subtraction and Division 2.6.3 Applications 2.7 Higher-Dimensional meshes of Trees 2.7.1 Definitions and Properties 2.7.2 The Shuffle-Tree Graph 2.8 Problems 2.9 Bibliographic Notes 3 Hypercubes and Related Networks 3.1 The Hypercube 3.1.1 Definitions and Properties 3.1.2 Containment of Arrays -Higher-Dimensional Arrays -Non-Power-of-2 Arrays 3.1.3 Containment of Complete Binary Trees 3.1.4 Embeddings of Arbitrary Binary Trees -Embeddings with Dilation 1 and Load O(M over N + log N) -Embeddings with Dilation O(1) and Load O (M over N + 1) -A Review of One-Error-Correcting Codes -Embedding Plog N into Hlog N 3.1.5 Containment of Meshes of Trees 3.1.6 Other Containment Results 3.2 The Butterfly, Cube-Connected-Cycles , and Benes Network 3.2.1 Definitions and Properties 3.2.2 Simulation of Arbitrary Networks 3.2.3 Simulation of Normal Hypercube Algorithms 3.2.4 Some Containment and Simulation Results 3.3 The Shuffle-Exchange and de Bruijn Graphs 3.3.1 Definitions and Properties 3.3.2 The Diaconis Card Tricks 3.3.3 Simulation of Normal Hypercube Algorithms 3.3.4 Similarities with the Butterfly 3.3.5 Some Containment and Simulation Results 3.4 Packet-Routing Algorithms 3.4.1 Definitions and Routing Models 3.4.2 Greedy Routing Algorithms and Worst-Case Problems 3.4.3 Packing, Spreading, and Monotone Routing Problems -Reducing a Many-to-Many Routing Problem to a Many-to-One Routing Problem -Reducing a Routing Problem to a Sorting Problem 3.4.4 The Average-Case Behavior of the Greedy Algorithm -Bounds on Congestion -Bounds on Running Time -Analyzing Non-Predictive Contention-Resolution Protocols 3.4.5 Converting Worst-Case Routing Problems into Average-Case Routing Problems -Hashing -Randomized Routing 3.4.6 Bounding Queue Sizes -Routing on Arbitrary Levelled Networks 3.4.7 Routing with Combining 3.4.8 The Information Dispersal Approach to Routing -Using Information Dispersal to Attain Fault-Tolerance -Finite Fields and Coding Theory 3.4.9 Circuit-Switching Algorithms 3.5 Sorting 3.5.1 Odd-Even Merge Sort -Constructing a Sorting Circuit with Depth log N(log N +1)/2 3.5.2 Sorting Small Sets 3.5.3 A Deterministic O(log N log log N)-Step Sorting Algorithm 3.5.4 Randomized O(log N)-Step Sorting Algorithms -A Circuit with Depth 7.45 log N that Usually Sorts 3.6 Simulating a Parallel Random Access Machine 3.6.1 PRAM Models and Shared Memories 3.6.2 Randomized Simulations Based on Hashing 3.6.3 Deterministic Simulations using Replicated Data 3.6.4 Using Information Dispersal to Improve Performance 3.7 The Fast Fourier Transform 3.7.1 The Algorithm 3.7.2 Implementation on the Butterfly and Shuffle-Exchange Graph 3.7.3 Application to Convolution and Polynomial Arithmetic 3.7.4 Application to Integer Multiplication 3.8 Other Hypercubic Networks 3.8.1 Butterflylike Networks -The Omega Network -The Flip Network -The Baseline and Reverse Baseline Networks -Banyan and Delta Networks -k-ary Butterflies 3.8.2 De Bruijn-Type Networks -The k-ary de Bruijn Graph -The Generalized Shuffle-Exchange Graph 3.9 Problems 3.10 Bibliographic Notes Bibliography Index Lemmas, Theorems, and Corollaries Author Index Subject Index

2,895 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Multiprocessorbased computers have been around for decades and various types of computer architectures [2] have been implemented in hardware throughout the years with different types of advantages/performance gains depending on the application....

    [...]

  • ...Every location in the array represents a node of the tree: T [1] is the root, with children at T [2] and T [3]....

    [...]

  • ...The text by [2] is a good start as it contains a comprehensive description of algorithms and different architecture topologies for the network model (tree, hypercube, mesh, and butterfly)....

    [...]

Book
01 Jan 1984
TL;DR: The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.
Abstract: The book is intended as a text to support two semesters of courses in computer architecture at the college senior and graduate levels. There are excellent problems for students at the end of each chapter. The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.

1,410 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Parallel architectures have been described in several books (see, for example, [18, 29])....

    [...]

Journal ArticleDOI
TL;DR: The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.
Abstract: Parallel computers with tens of thousands of processors are typically programmed in a data parallel style, as opposed to the control parallel style used in multiprocessing. The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.

1,000 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Recent work on the mapping of PRAM algorithms on bounded-degree networks is described in [3,13,14, 20, 25], Our presentation on the communication complexity of the matrix-multiplication problem in the sharedmemory model is taken from [1], Data-parallel algorithms are described in [15]....

    [...]

Proceedings ArticleDOI
01 May 1978
TL;DR: A model of computation based on random access machines operating in parallel and sharing a common memory is presented and can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines.
Abstract: A model of computation based on random access machines operating in parallel and sharing a common memory is presented. The computational power of this model is related to that of traditional models. In particular, deterministic parallel RAM's can accept in polynomial time exactly the sets accepted by polynomial tape bounded Turing machines; nondeterministic RAM's can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines. Similar results hold for other classes. The effect of limiting the size of the common memory is also considered.

951 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Rigorous descriptions of shared-memory models were introduced later in [11,12]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Abstract: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log2n + 10(n - 1)/p using p ≥ 1 processors which can independently perform arithmetic operations in unit time. This bound is within a constant factor of the best possible. A sharper result is given for expressions without the division operation, and the question of numerical stability is discussed.

864 citations


"An introduction to parallel algorit..." refers methods in this paper

  • ...The WT scheduling principle is derived from a theorem in [7], In the literature, this principle is commonly referred to as Brent's theorem or Brent's scheduling principle....

    [...]