scispace - formally typeset
Search or ask a question
Book

An introduction to parallel algorithms

01 Oct 1992-
TL;DR: This book provides an introduction to the design and analysis of parallel algorithms, with the emphasis on the application of the PRAM model of parallel computation, with all its variants, to algorithm analysis.
Abstract: Written by an authority in the field, this book provides an introduction to the design and analysis of parallel algorithms. The emphasis is on the application of the PRAM (parallel random access machine) model of parallel computation, with all its variants, to algorithm analysis. Special attention is given to the selection of relevant data structures and to algorithm design principles that have proved to be useful. Features *Uses PRAM (parallel random access machine) as the model for parallel computation. *Covers all essential classes of parallel algorithms. *Rich exercise sets. *Written by a highly respected author within the field. 0201548569B04062001

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: In this paper, a sampling-based method to determine cuts in an undirected graph was proposed, which leads to simple linear-time sequential algorithms for finding all cut edges, 2-edge-connected components, and cut pairs.
Abstract: We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form a cut) of a graph. In the model of distributed computing in a graph G=(V, E) with O(log V)-bit messages, our approach yields faster algorithms for several problems. The diameter of G is denoted by Diam, and the maximum degree by Delta. We obtain simple O(Diam)-time distributed algorithms to find all cut edges, 2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under natural conditions these new algorithms are universally optimal --- i.e. a Omega(Diam)-time lower bound holds on every graph. We obtain a O(Diam+Delta/log V)-time distributed algorithm for finding cut vertices; this is faster than the best previous algorithm when Delta, Diam = O(sqrt(V)). A simple extension of our work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the asymptotic complexity. In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.

21 citations

Journal ArticleDOI
TL;DR: It is proved that using k-CAS primitives can improve neither the time nor the space complexity of implementations of widely used concurrent objects, such as counter, stack, queue, and collect.
Abstract: This paper presents lower bounds on the time and space complexity of implementations that use k-compare&swap (k-CAS) synchronization primitives. We prove that using k-CAS primitives can improve neither the time nor the space complexity of implementations of widely used concurrent objects, such as counter, stack, queue, and collect. Surprisingly, overly restrictive use of k-CAS may even increase the space complexity required by such implementations. We prove a lower bound of ?(log2 n) on the round complexity of implementations of a collect object using read, write, and k-CAS, for any k, where n is the number of processes in the system. There is an implementation of collect with O(log2 n) round complexity that uses only reads and writes. Thus, our lower bound establishes that k-CAS is no stronger than read and write for collect implementation round complexity. For k-CAS operations that return the values of all the objects they access, we prove that the total step complexity of implementing key objects such as counters, stacks, and queues is ?(n logk n). We also prove that k-CAS cannot improve the space complexity of implementing many objects (including counter, stack, queue, and single-writer snapshot). An implementation has to use at least n base objects even if k-CAS is allowed, and if all operations (other than read) swap exactly k base objects, then it must use at least k - n base objects.

21 citations


Cites methods from "An introduction to parallel algorit..."

  • ...This intuition is captured, in a precise sense, by adapting a technique of Beame [11], originally applied in the synchronous CRCW PRAM model [20]....

    [...]

Proceedings ArticleDOI
15 Apr 1996
TL;DR: A parallel algorithm for the minimization of deterministic finite state automata (DFAs) is presented and it is shown that its time complexity on a p processor EREW PRAM for inputs of size n is O([n log/sup 2/ n/p]+log n log p) uniformly on almost all instances.
Abstract: We present a parallel algorithm for the minimization of deterministic finite state automata (DFAs) and discuss its implementation on a connection machine CM-5 using data parallel and message passing models. We show that its time complexity on a p processor EREW PRAM (p/spl les/n) for inputs of size n is O([n log/sup 2/ n/p]+log n log p) uniformly on almost all instances. The work done by our algorithm is thus within a factor of O(log n) of the best known sequential algorithm. The space used by our algorithm is linear in the input size. The actual resource requirements of our implementations are consistent with these estimates. Although parallel algorithms have been proposed for this problem in the past, they are not practical. We discuss the implementation details and the experimental results.

21 citations


Cites methods from "An introduction to parallel algorit..."

  • ...See [8] for a systematic treatment of the PRAM algorithms....

    [...]

Journal ArticleDOI
TL;DR: This work considers the problem of coding labeled trees by means of strings of node labels, and shows that both coding and decoding can be reduced to integer sorting, closing several open problems within a unified framework that can be applied both in a sequential and in a parallel setting.

21 citations


Cites background or methods from "An introduction to parallel algorit..."

  • ...We remark that the Euler tour technique requires a particular data structure [14] that can be built as described in [12]....

    [...]

  • ...We remark that f can be easily computed using the Rake technique [14]....

    [...]

  • ...A list ranking then gives the position of each node in its chain in O(log n) time with cost O(n) [14]....

    [...]

  • ...For the other codes, σ(i) can be computed for each i using a prefix sum operation [14]....

    [...]

  • ...We work in the simplest PRAM model with exclusive read and write operations (EREW [14])....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors show that interval and maximum entropy methods not only do not compete, but they complement each other, and explain how they can be used to solve the same application problems.
Abstract: Because these fields are closely related, and since this relation is not yet a common knowledge, I would like it to be known to the interval community. Yes, terms that we use are different, and mathematical methods are different, but these different methods are used to solve the same application problems. In solving these problems, interval and maximum entropy methods not only do not compete, they complement each other. In this report, I will try to explain how.

21 citations

References
More filters
Book
01 Sep 1991
TL;DR: This chapter discusses sorting on a Linear Array with a Systolic and Semisystolic Model of Computation, which automates the very labor-intensive and therefore time-heavy and expensive process of manually sorting arrays.
Abstract: Preface Acknowledgments Notation 1 Arrays and Trees 1.1 Elementary Sorting and Counting 1.1.1 Sorting on a Linear Array Assessing the Performance of the Algorithm Sorting N Numbers with Fewer Than N Processors 1.1.2 Sorting in the Bit Model 1.1.3 Lower Bounds 1.1.4 A Counterexample-Counting 1.1.5 Properties of the Fixed-Connection Network Model 1.2 Integer Arithmetic 1.2.1 Carry-Lookahead Addition 1.2.2 Prefix Computations-Segmented Prefix Computations 1.2.3 Carry-Save Addition 1.2.4 Multiplication and Convolution 1.2.5 Division and Newton Iteration 1.3 Matrix Algorithms 1.3.1 Elementary Matrix Products 1.3.2 Algorithms for Triangular Matrices 1.3.3 Algorithms for Tridiagonal Matrices -Odd-Even Reduction -Parallel Prefix Algorithms 1.3.4 Gaussian Elimination 1.3.5 Iterative Methods -Jacobi Relaxation -Gauss-Seidel Relaxation Finite Difference Methods -Multigrid Methods 1.4 Retiming and Systolic Conversion 1.4.1 A Motivating Example-Palindrome Recognition 1.4.2 The Systolic and Semisystolic Model of Computation 1.4.3 Retiming Semisystolic Networks 1.4.4 Conversion of a Semisystolic Network into a Systolic Network 1.4.5 The Special Case of Broadcasting 1.4.6 Retiming the Host 1.4.7 Design by Systolic Conversion-A Summary 1.5 Graph Algorithms 1.5.1 Transitive Closure 1.5.2 Connected Components 1.5.3 Shortest Paths 1.5.4 Breadth-First Spanning Trees 1.5.5 Minimum Weight Spanning Trees 1.6 Sorting Revisited 1.6.1 Odd-Even Transposition Sort on a Linear Array 1.6.2 A Simple Root-N(log N + 1)-Step Sorting Algorithm 1.6.3 A (3 Root- N + o(Root-N))-Step Sorting Algorithm 1.6.4 A Matching Lower Bound 1.7 Packet Routing 1.7.1 Greedy Algorithms 1.7.2 Average-Case Analysis of Greedy Algorithms -Routing N Packets to Random Destinations -Analysis of Dynamic Routing Problems 1.7.3 Randomized Routing Algorithms 1.7.4 Deterministic Algorithms with Small Queues 1.7.5 An Off-line Algorithm 1.7.6 Other Routing Models and Algorithms 1.8 Image Analysis and Computational Geometry 1.8.1 Component-Labelling Algorithms -Levialdi's Algorithm -An O (Root-N)-Step Recursive Algorithm 1.8.2 Computing Hough Transforms 1.8.3 Nearest-Neighbor Algorithms 1.8.4 Finding Convex Hulls 1.9 Higher-Dimensional Arrays 1.9.1 Definitions and Properties 1.9.2 Matrix Multiplication 1.9.3 Sorting 1.9.4 Packet Routing 1.9.5 Simulating High-Dimensional Arrays on Low-Dimensional Arrays 1.10 problems 1.11 Bibliographic Notes 2 Meshes of Trees 2.1 The Two-Dimensional Mesh of Trees 2.1.1 Definition and Properties 2.1.2 Recursive Decomposition 2.1.3 Derivation from KN,N 2.1.4 Variations 2.1.5 Comparison With the Pyramid and Multigrid 2.2 Elementary O(log N)-Step Algorithms 2.2.1 Routing 2.2.2 Sorting 2.2.3 Matrix-Vector Multiplication 2.2.4 Jacobi Relaxation 2.2.5 Pivoting 2.2.6 Convolution 2.2.7 Convex Hull 2.3 Integer Arithmetic 2.3.1 Multiplication 2.3.2 Division and Chinese Remaindering 2.3.3 Related Problems -Iterated Products -Rooting Finding 2.4 Matrix Algorithms 2.4.1 The Three-Dimensional Mesh of Trees 2.4.2 Matrix Multiplication 2.4.3 Inverting Lower Triangular Matrices 2.4.4 Inverting Arbitrary Matrices -Csanky's Algorithm -Inversion by Newton Iteration 2.4.5 Related Problems 2.5 Graph Algorithms 2.5.1 Minimum-Weight Spanning Trees 2.5.2 Connected Components 2.5.3 Transitive Closure 2.5.4 Shortest Paths 2.5.5 Matching Problems 2.6 Fast Evaluation of Straight-Line Code 2.6.1 Addition and Multiplication Over a Semiring 2.6.2 Extension to Codes with Subtraction and Division 2.6.3 Applications 2.7 Higher-Dimensional meshes of Trees 2.7.1 Definitions and Properties 2.7.2 The Shuffle-Tree Graph 2.8 Problems 2.9 Bibliographic Notes 3 Hypercubes and Related Networks 3.1 The Hypercube 3.1.1 Definitions and Properties 3.1.2 Containment of Arrays -Higher-Dimensional Arrays -Non-Power-of-2 Arrays 3.1.3 Containment of Complete Binary Trees 3.1.4 Embeddings of Arbitrary Binary Trees -Embeddings with Dilation 1 and Load O(M over N + log N) -Embeddings with Dilation O(1) and Load O (M over N + 1) -A Review of One-Error-Correcting Codes -Embedding Plog N into Hlog N 3.1.5 Containment of Meshes of Trees 3.1.6 Other Containment Results 3.2 The Butterfly, Cube-Connected-Cycles , and Benes Network 3.2.1 Definitions and Properties 3.2.2 Simulation of Arbitrary Networks 3.2.3 Simulation of Normal Hypercube Algorithms 3.2.4 Some Containment and Simulation Results 3.3 The Shuffle-Exchange and de Bruijn Graphs 3.3.1 Definitions and Properties 3.3.2 The Diaconis Card Tricks 3.3.3 Simulation of Normal Hypercube Algorithms 3.3.4 Similarities with the Butterfly 3.3.5 Some Containment and Simulation Results 3.4 Packet-Routing Algorithms 3.4.1 Definitions and Routing Models 3.4.2 Greedy Routing Algorithms and Worst-Case Problems 3.4.3 Packing, Spreading, and Monotone Routing Problems -Reducing a Many-to-Many Routing Problem to a Many-to-One Routing Problem -Reducing a Routing Problem to a Sorting Problem 3.4.4 The Average-Case Behavior of the Greedy Algorithm -Bounds on Congestion -Bounds on Running Time -Analyzing Non-Predictive Contention-Resolution Protocols 3.4.5 Converting Worst-Case Routing Problems into Average-Case Routing Problems -Hashing -Randomized Routing 3.4.6 Bounding Queue Sizes -Routing on Arbitrary Levelled Networks 3.4.7 Routing with Combining 3.4.8 The Information Dispersal Approach to Routing -Using Information Dispersal to Attain Fault-Tolerance -Finite Fields and Coding Theory 3.4.9 Circuit-Switching Algorithms 3.5 Sorting 3.5.1 Odd-Even Merge Sort -Constructing a Sorting Circuit with Depth log N(log N +1)/2 3.5.2 Sorting Small Sets 3.5.3 A Deterministic O(log N log log N)-Step Sorting Algorithm 3.5.4 Randomized O(log N)-Step Sorting Algorithms -A Circuit with Depth 7.45 log N that Usually Sorts 3.6 Simulating a Parallel Random Access Machine 3.6.1 PRAM Models and Shared Memories 3.6.2 Randomized Simulations Based on Hashing 3.6.3 Deterministic Simulations using Replicated Data 3.6.4 Using Information Dispersal to Improve Performance 3.7 The Fast Fourier Transform 3.7.1 The Algorithm 3.7.2 Implementation on the Butterfly and Shuffle-Exchange Graph 3.7.3 Application to Convolution and Polynomial Arithmetic 3.7.4 Application to Integer Multiplication 3.8 Other Hypercubic Networks 3.8.1 Butterflylike Networks -The Omega Network -The Flip Network -The Baseline and Reverse Baseline Networks -Banyan and Delta Networks -k-ary Butterflies 3.8.2 De Bruijn-Type Networks -The k-ary de Bruijn Graph -The Generalized Shuffle-Exchange Graph 3.9 Problems 3.10 Bibliographic Notes Bibliography Index Lemmas, Theorems, and Corollaries Author Index Subject Index

2,895 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Multiprocessorbased computers have been around for decades and various types of computer architectures [2] have been implemented in hardware throughout the years with different types of advantages/performance gains depending on the application....

    [...]

  • ...Every location in the array represents a node of the tree: T [1] is the root, with children at T [2] and T [3]....

    [...]

  • ...The text by [2] is a good start as it contains a comprehensive description of algorithms and different architecture topologies for the network model (tree, hypercube, mesh, and butterfly)....

    [...]

Book
01 Jan 1984
TL;DR: The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.
Abstract: The book is intended as a text to support two semesters of courses in computer architecture at the college senior and graduate levels. There are excellent problems for students at the end of each chapter. The authors have divided the use of computers into the following four levels of sophistication: data processing, information processing, knowledge processing, and intelligence processing.

1,410 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Parallel architectures have been described in several books (see, for example, [18, 29])....

    [...]

Journal ArticleDOI
TL;DR: The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.
Abstract: Parallel computers with tens of thousands of processors are typically programmed in a data parallel style, as opposed to the control parallel style used in multiprocessing. The success of data parallel algorithms—even on problems that at first glance seem inherently serial—suggests that this style of programming has much wider applicability than was previously thought.

1,000 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Recent work on the mapping of PRAM algorithms on bounded-degree networks is described in [3,13,14, 20, 25], Our presentation on the communication complexity of the matrix-multiplication problem in the sharedmemory model is taken from [1], Data-parallel algorithms are described in [15]....

    [...]

Proceedings ArticleDOI
01 May 1978
TL;DR: A model of computation based on random access machines operating in parallel and sharing a common memory is presented and can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines.
Abstract: A model of computation based on random access machines operating in parallel and sharing a common memory is presented. The computational power of this model is related to that of traditional models. In particular, deterministic parallel RAM's can accept in polynomial time exactly the sets accepted by polynomial tape bounded Turing machines; nondeterministic RAM's can accept in polynomial time exactly the sets accepted by nondeterministic exponential time bounded Turing machines. Similar results hold for other classes. The effect of limiting the size of the common memory is also considered.

951 citations


"An introduction to parallel algorit..." refers background in this paper

  • ...Rigorous descriptions of shared-memory models were introduced later in [11,12]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Abstract: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log2n + 10(n - 1)/p using p ≥ 1 processors which can independently perform arithmetic operations in unit time. This bound is within a constant factor of the best possible. A sharper result is given for expressions without the division operation, and the question of numerical stability is discussed.

864 citations


"An introduction to parallel algorit..." refers methods in this paper

  • ...The WT scheduling principle is derived from a theorem in [7], In the literature, this principle is commonly referred to as Brent's theorem or Brent's scheduling principle....

    [...]