scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China.

TL;DR: The national emergency response appears to have delayed the growth and limited the size of the COVID-19 epidemic in China, averting hundreds of thousands of cases by 19 February (day 50), and suspending intracity public transport, closing entertainment venues, and banning public gatherings were associated with reductions in case incidence.
Abstract: Responding to an outbreak of a novel coronavirus [agent of coronavirus disease 2019 (COVID-19)] in December 2019, China banned travel to and from Wuhan city on 23 January 2020 and implemented a national emergency response. We investigated the spread and control of COVID-19 using a data set that included case reports, human movement, and public health interventions. The Wuhan shutdown was associated with the delayed arrival of COVID-19 in other cities by 2.91 days. Cities that implemented control measures preemptively reported fewer cases on average (13.0) in the first week of their outbreaks compared with cities that started control later (20.6). Suspending intracity public transport, closing entertainment venues, and banning public gatherings were associated with reductions in case incidence. The national emergency response appears to have delayed the growth and limited the size of the COVID-19 epidemic in China, averting hundreds of thousands of cases by 19 February (day 50).
Citations
More filters
Journal ArticleDOI
06 Mar 2020-Science
TL;DR: The results suggest that early detection, hand washing, self-isolation, and household quarantine will likely be more effective than travel restrictions at mitigating this pandemic, and sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.
Abstract: Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

2,949 citations

Journal ArticleDOI
01 May 2020-Science
TL;DR: Real-time mobility data from Wuhan and detailed case data including travel history are used to elucidate the role of case importation in transmission in cities across China and to ascertain the impact of control measures.
Abstract: The ongoing coronavirus disease 2019 (COVID-19) outbreak expanded rapidly throughout China. Major behavioral, clinical, and state interventions were undertaken to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, affected COVID-19 spread in China. We used real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation in transmission in cities across China and to ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was explained well by human mobility data. After the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases were still indicative of local chains of transmission outside of Wuhan. This study shows that the drastic control measures implemented in China substantially mitigated the spread of COVID-19.

2,362 citations

Journal ArticleDOI
TL;DR: Policy makers need to be aware of the equivocal evidence when considering school closures for COVID-19, and that combinations of social distancing measures should be considered.

1,559 citations

Journal ArticleDOI
19 May 2020-JAMA
TL;DR: A series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan, China, and may inform public health policy in other countries and regions.
Abstract: Importance Coronavirus disease 2019 (COVID-19) has become a pandemic, and it is unknown whether a combination of public health interventions can improve control of the outbreak. Objective To evaluate the association of public health interventions with the epidemiological features of the COVID-19 outbreak in Wuhan by 5 periods according to key events and interventions. Design, Setting, and Participants In this cohort study, individual-level data on 32 583 laboratory-confirmed COVID-19 cases reported between December 8, 2019, and March 8, 2020, were extracted from the municipal Notifiable Disease Report System, including patients’ age, sex, residential location, occupation, and severity classification. Exposures Nonpharmaceutical public health interventions includingcordons sanitaire, traffic restriction, social distancing, home confinement, centralized quarantine, and universal symptom survey. Main Outcomes and Measures Rates of laboratory-confirmed COVID-19 infections (defined as the number of cases per day per million people), across age, sex, and geographic locations were calculated across 5 periods: December 8 to January 9 (no intervention), January 10 to 22 (massive human movement due to the Chinese New Year holiday), January 23 to February 1 (cordons sanitaire, traffic restriction and home quarantine), February 2 to 16 (centralized quarantine and treatment), and February 17 to March 8 (universal symptom survey). The effective reproduction number of SARS-CoV-2 (an indicator of secondary transmission) was also calculated over the periods. Results Among 32 583 laboratory-confirmed COVID-19 cases, the median patient age was 56.7 years (range, 0-103; interquartile range, 43.4-66.8) and 16 817 (51.6%) were women. The daily confirmed case rate peaked in the third period and declined afterward across geographic regions and sex and age groups, except for children and adolescents, whose rate of confirmed cases continued to increase. The daily confirmed case rate over the whole period in local health care workers (130.5 per million people [95% CI, 123.9-137.2]) was higher than that in the general population (41.5 per million people [95% CI, 41.0-41.9]). The proportion of severe and critical cases decreased from 53.1% to 10.3% over the 5 periods. The severity risk increased with age: compared with those aged 20 to 39 years (proportion of severe and critical cases, 12.1%), elderly people (≥80 years) had a higher risk of having severe or critical disease (proportion, 41.3%; risk ratio, 3.61 [95% CI, 3.31-3.95]) while younger people ( Conclusions and Relevance A series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan, China. These findings may inform public health policy in other countries and regions.

1,307 citations

Journal ArticleDOI
TL;DR: It is extremely important, that the national authorities acknowledge the reality that the virus spreads through air, and recommend that adequate control measures be implemented to prevent further spread of the SARS-CoV-2 virus, in particularly removal of the virus-laden droplets from indoor air by ventilation.

1,280 citations


Cites background from "An investigation of transmission co..."

  • ...Countries have enacted emergency response procedures, and travel bans have been put in place (Tian et al. 2020), and lockdown procedures which limit the movement of people inside the administrative zones....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

21,455 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
TL;DR: There is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019 and considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere.
Abstract: Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the...

13,101 citations

Journal ArticleDOI
TL;DR: The phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans.

9,474 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Abstract: Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1–3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans. Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.

9,231 citations

Related Papers (5)