scispace - formally typeset
Open AccessJournal ArticleDOI

An Observational Determination of the Bolometric Quasar Luminosity Function

Reads0
Chats0
TLDR
In this paper, the authors combine a large set of quasar luminosity function (QLF) measurements from the rest-frame optical, soft and hard X-ray, and near and mid-IR bands to determine the bolometric QLF in the redshift interval z = 0-6.
Abstract
We combine a large set of quasar luminosity function (QLF) measurements from the rest-frame optical, soft and hard X-ray, and near- and mid-IR bands to determine the bolometric QLF in the redshift interval z = 0-6. Accounting for the observed distributions of quasar column densities and variation of SED shapes, as well as their dependence on luminosity, makes it possible to integrate the observations in a reliable manner and provides a baseline in redshift and luminosity larger than that of any individual survey. We infer the QLF break luminosity and faint-end slope out to z ~ 4.5 and confirm at high significance (10 σ) previous claims of a flattening in both the faint- and bright-end slopes with redshift. With the best-fit estimates of the column density distribution and quasar SED, which both depend on luminosity, a single bolometric QLF self-consistently reproduces the observed QLFs in all bands and at all redshifts for which we compile measurements. Ignoring this luminosity dependence does not yield a self-consistent bolometric QLF and there is no evidence for any additional dependence on redshift. We calculate the expected relic black hole mass function and mass density, cosmic X-ray background, and ionization rate as a function of redshift and find that they are consistent with existing measurements. The peak in the total quasar luminosity density is well constrained at z = 2.15 ± 0.05. We provide a number of fitting functions to the bolometric QLF and its manifestations in various bands, as well as a script to return the QLF at arbitrary frequency and redshift from these fits.

read more

Figures
Citations
More filters
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Cosmic Star Formation History

TL;DR: In this paper, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity

TL;DR: In this paper, a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies is proposed.
Journal ArticleDOI

Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies and the Distant Universe

Michael R. Blanton, +415 more
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
References
More filters
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical Summary

Donald G. York
- 27 Jun 2000 - 
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Journal ArticleDOI

A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies

TL;DR: The mass of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05.
Journal ArticleDOI

The Demography of massive dark objects in galaxy centers

TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Related Papers (5)