scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An Overview and Deep Investigation on Sampled-Data-Based Event-Triggered Control and Filtering for Networked Systems

TL;DR: This paper provides an overview and makes a deep investigation on sampled-data-based event-triggered control and filtering for networked systems, finding that a sampled- Data-based Event-Triggered Scheme can ensure a positive minimum inter-event time and make it possible to jointly design suitable feedback controllers and event- triggered threshold parameters.
Abstract: This paper provides an overview and makes a deep investigation on sampled-data-based event-triggered control and filtering for networked systems. Compared with some existing event-triggered and self-triggered schemes, a sampled-data-based event-triggered scheme can ensure a positive minimum inter-event time and make it possible to jointly design suitable feedback controllers and event-triggered threshold parameters. Thus, more attention has been paid to the sampled-data-based event-triggered scheme. A deep investigation is first made on the sampled-data-based event-triggered scheme. Then, recent results on sampled-data-based event-triggered state feedback control, dynamic output feedback control, $H_\infty$ filtering for networked systems are surveyed and analyzed. An overview on sampled-data-based event-triggered consensus for distributed multiagent systems is given. Finally, some challenging issues are addressed to direct the future research.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of recent advances in event-triggered consensus of MASs is provided and some in-depth analysis is made on several event- Triggered schemes, including event-based sampling schemes, model-based event-Triggered scheme, sampled-data-basedevent-trIGgered schemes), and self- triggered sampling schemes.
Abstract: Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in event-triggered consensus of MASs. First, a basic framework of multiagent event-triggered operational mechanisms is established. Second, representative results and methodologies reported in the literature are reviewed and some in-depth analysis is made on several event-triggered schemes, including event-based sampling schemes, model-based event-triggered schemes, sampled-data-based event-triggered schemes, and self-triggered sampling schemes. Third, two examples are outlined to show applicability of event-triggered consensus in power sharing of microgrids and formation control of multirobot systems, respectively. Finally, some challenging issues on event-triggered consensus are proposed for future research.

770 citations


Cites background from "An Overview and Deep Investigation ..."

  • ...Deep analysis and investigations on eventtriggered control and filtering in networked control systems are referred to some recent survey papers [38], [53]....

    [...]

Journal ArticleDOI
TL;DR: An overview of recent advances on security control and attack detection of industrial CPSs is presented, and robustness, security and resilience as well as stability are discussed to govern the capability of weakening various attacks.

663 citations

Journal ArticleDOI
TL;DR: An event-triggered formation protocol is delicately proposed by using only locally triggered sampled data in a distributed manner and the state formation control problem is cast into an asymptotic stability problem of a reduced-order closed-loop system.
Abstract: This paper addresses the distributed formation control problem of a networked multi-agent system (MAS) subject to limited communication resources. First, a dynamic event-triggered communication mechanism (DECM) is developed to schedule inter-agent communication such that some unnecessary data exchanges among agents can be reduced so as to achieve better resource efficiency. Different from most of the existing event-triggered communication mechanisms, wherein threshold parameters are fixed all the time, the threshold parameter in the developed event triggering condition is dynamically adjustable in accordance with a dynamic rule. It is numerically shown that the proposed DECM can achieve a better tradeoff between reducing inter-agent communication frequency and preserving an expected formation than some existing ones. Second, an event-triggered formation protocol is delicately proposed by using only locally triggered sampled data in a distributed manner. Based on the formation protocol, it is shown that the state formation control problem is cast into an asymptotic stability problem of a reduced-order closed-loop system. Then, criteria for designing desired formation protocol and communication mechanism are derived. Finally, the effectiveness and advantages of the proposed approach are demonstrated through a comparative study in multirobot formation control.

448 citations


Cites background from "An Overview and Deep Investigation ..."

  • ...Readers are also referred to the survey papers [26]–[28] and many references therein for some latest results on event-triggered control....

    [...]

Journal ArticleDOI
TL;DR: A survey of trends and techniques in networked control systems from the perspective of ‘ control over networks ’ is presented, providing a snapshot of five control issues: sampled-data control, quantization control, networking control, event-triggered control, and security control.
Abstract: Networked control systems are spatially distributed systems in which the communication between sensors, actuators, and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices, increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems, process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘ control over networks ’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘ control over networks ’ , providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.

423 citations


Additional excerpts

  • ..., survey papers [83]–[85] and references therein....

    [...]

Journal ArticleDOI
TL;DR: An overview of recent advances in fixed-time cooperative control of multiagent systems is presented and several challenging issues that need to be addressed in the near future are raised.
Abstract: Fixed-time cooperative control is currently a hot research topic in multiagent systems since it can provide a guaranteed settling time, which does not depend on initial conditions. Compared with asymptotic cooperative control algorithms, fixed-time cooperative control algorithms can achieve better closed-loop performance and disturbance rejection properties. Different from finite-time control, fixed-time cooperative control produces the faster rate of convergence and provides an explicit estimation of the settling time independent of initial conditions, which is desirable for multiagent systems. This paper aims at presenting an overview of recent advances in fixed-time cooperative control of multiagent systems. Some fundamental concepts about finite- and fixed-time stability and stabilization are first recalled with insight understanding. Then, recent results in finite- and fixed-time cooperative control are reviewed in detail and categorized according to different agent dynamics. Finally, this paper raises several challenging issues that need to be addressed in the near future.

409 citations


Additional excerpts

  • ...the desired system performance [86]–[89]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Abstract: In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.

11,658 citations


"An Overview and Deep Investigation ..." refers background in this paper

  • ...In [79], two types of consensus protocols are proposed for two different cases: 1)...

    [...]

  • ...Since the pioneer work of Olfati–Saber and Murray (2004) [79], a consensus problem of distributed MASs has become a very attractive research topic due to its wide applications in cooperative control of mobile robots, formation control of unmanned vehicles, and so on [80], [81]....

    [...]

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations


"An Overview and Deep Investigation ..." refers background in this paper

  • ...Since the pioneer work of Olfati–Saber and Murray (2004) [79], a consensus problem of distributed MASs has become a very attractive research topic due to its wide applications in cooperative control of mobile robots, formation control of unmanned vehicles, and so on [80], [81]....

    [...]

Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations


"An Overview and Deep Investigation ..." refers background in this paper

  • ...The ETC provides a natural way to execute control tasks, under which, whether or not a control task is executed depends closely on a predefined event-triggered condition, rather than on the lapse of some time period [3], [5]....

    [...]

  • ...More significantly, this model makes it possible to jointly design suitable eventtriggered controllers and event-triggered parameters in terms of linear matrix inequalities rather than using an emulation-based approach [3], [5], [17]....

    [...]

  • ...The event-triggered mechanism is usually predefined as some condition related closely to instantaneous system states or system measurements [3], [8]....

    [...]

  • ...It is proven [3] that the positive minimum inter-event time is guaranteed to exist for state feedback control of linear physical plants without external...

    [...]

  • ...Thus, in these cases, time-triggered control should give way to event-triggered control (ETC) [3], [4]....

    [...]

BookDOI
01 Jan 2008
TL;DR: In this article, the authors present a survey of the use of consensus algorithms in multi-vehicle cooperative control, including single-and double-integrator dynamical systems, rigid-body attitude dynamics, rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance.
Abstract: The coordinated use of autonomous vehicles has an abundance of potential applications from the domestic to the hazardously toxic. Frequently the communications necessary for the productive interplay of such vehicles may be subject to limitations in range, bandwidth, noise and other causes of unreliability. Information consensus guarantees that vehicles sharing information over a network topology have a consistent view of information critical to the coordination task. Assuming only neighbor-neighbor interaction between vehicles, Distributed Consensus in Multi-vehicle Cooperative Control develops distributed consensus strategies designed to ensure that the information states of all vehicles in a network converge to a common value. This approach strengthens the team, minimizing power consumption and the deleterious effects of range and other restrictions. The monograph is divided into six parts covering introductory, theoretical and experimental material and featuring: an overview of the use of consensus algorithms in cooperative control; consensus algorithms in single- and double-integrator dynamical systems; consensus algorithms for rigid-body attitude dynamics; rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance. Notation drawn from graph and matrix theory and background material on linear and nonlinear system theory are enumerated in six appendices. The authors maintain a website at which can be found a sample simulation and experimental video material associated with experiments in several chapters of this book. Academic control systems researchers and their counterparts in government laboratories and robotics- and aerospace-related industries will find the ideas presented in Distributed Consensus in Multi-vehicle Cooperative Control of great interest. This text will also serve as a valuable support and reference for graduate courses in robotics, and linear and nonlinear control systems.

2,720 citations

Book
08 Mar 1996
TL;DR: This paper proposes a direct attack in the continuous-time domain, where sampled-data systems are time-varying.
Abstract: Part I presents two indirect methods of sampled-data controller design: These approaches include approximations to a real problem, which involves an analogue plant, continuous-time performance specifications, and a sampled-data controller Part II proposes a direct attack in the continuous-time domain, where sampled-data systems are time-varying The findings are presented in forms that can readily be programmed in, eg, MATLAB

1,886 citations


"An Overview and Deep Investigation ..." refers background in this paper

  • ...To proceed with, we start from an event trigger....

    [...]