scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An overview of additive manufacturing (3D printing) for microfabrication

01 Apr 2017-Microsystem Technologies-micro-and Nanosystems-information Storage and Processing Systems (Springer Berlin Heidelberg)-Vol. 23, Iss: 4, pp 1117-1124
TL;DR: In this article, a review of various additive manufacturing methods is presented and selected features are compared, and some examples requiring features on the micron-scale are presented, including 3D printing.
Abstract: Additive manufacturing or 3D printing is a rapidly developing technology that has revolutionized the manufacturing sector. In this paper, a review of various manufacturing methods is presented and selected features are compared. Some examples requiring features on the micron-scale are presented.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of the physical processes during 3D printing and the fundamental science of densification after sintering and post-heat treatment steps are provided to understand the microstructural evolution and properties of binder jetted parts.

293 citations

Journal ArticleDOI
TL;DR: The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated and a brief summary of 3D-printed soft devices suitable for medical to industrial applications is included.

260 citations

Journal ArticleDOI
TL;DR: 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds, and physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration.
Abstract: Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.

247 citations


Cites methods from "An overview of additive manufacturi..."

  • ...is imported into slicing software, and a 3D printer is used to print the model (Bhushan and Caspers, 2017)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effects of carbon fiber reinforcement on the structure and mechanical properties of 3D printed parts are investigated within the body of literature, and current and potential applications of additively manufactured carbon fiber composites in the context of desktop 3D printing and big area additive manufacturing are discussed.
Abstract: While polymer additive manufacturing (AM) has advanced significantly over the past few decades, the limitations in material properties, speed of manufacture, and part size have relegated this technology to the space of rapid prototyping rather than the legitimate manufacture of end-use parts. Carbon fiber offers a low density, a low coefficient of thermal expansion, and high thermal conductivity and is an ideal material for bringing polymer-based AM from the realm of form and fit to that of form, fit, and function. Use of carbon fiber in AM can improve material properties, reduce the time required to manufacture functional parts compared with traditional subtractive technologies, and reduce warping, thereby enabling a larger possible build envelope. Therefore, the addition of carbon fiber to various AM technologies is of increasing interest in academic and industrial communities. This paper examines the work performed in this fast-growing area to date. Specifically, the effects of fiber reinforcement on the structure and mechanical properties of 3D printed parts are investigated within the body of literature. Upper bounds for tensile properties of carbon fiber composites are theoretically evaluated and compared with experimentally measured values. Moreover, current and potential applications of additively manufactured carbon fiber composites in the context of desktop 3D printing and big area AM are discussed. Recent innovations and industry breakthroughs in this field are also examined. This review is intended to organize and synthesize the present body of work surrounding AM of carbon fiber reinforced plastics, identify the most promising technologies, and prescribe viable research and development paths forward to advance AM from the application space of rapid prototyping to that of functional, load-bearing, end-use parts.

236 citations

References
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

BookDOI
01 Jan 2015
TL;DR: A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly as mentioned in this paper, with a broad range of technical questions to ensure comprehensive understanding of the concepts covered.
Abstract: This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.

1,878 citations

Journal ArticleDOI
TL;DR: Additive manufacturing processes take the information from a computer-aided design (CAD) file that is later converted to a stereolithography (STL) file as discussed by the authors.
Abstract: Additive manufacturing processes take the information from a computer-aided design (CAD) file that is later converted to a stereolithography (STL) file. In this process, the drawing made in the CAD software is approximated by triangles and sliced containing the information of each layer that is going to be printed. There is a discussion of the relevant additive manufacturing processes and their applications. The aerospace industry employs them because of the possibility of manufacturing lighter structures to reduce weight. Additive manufacturing is transforming the practice of medicine and making work easier for architects. In 2004, the Society of Manufacturing Engineers did a classification of the various technologies and there are at least four additional significant technologies in 2012. Studies are reviewed which were about the strength of products made in additive manufacturing processes. However, there is still a lot of work and research to be accomplished before additive manufacturing technologies become standard in the manufacturing industry because not every commonly used manufacturing material can be handled. The accuracy needs improvement to eliminate the necessity of a finishing process. The continuous and increasing growth experienced since the early days and the successful results up to the present time allow for optimism that additive manufacturing has a significant place in the future of manufacturing.

1,777 citations

Journal ArticleDOI
TL;DR: This review article focuses on recent advances in 3D printed bone tissue engineering scaffolds along with current challenges and future directions.

1,461 citations

Journal ArticleDOI
TL;DR: In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-am systems, 3D direct writing, and hybrid processes, and the key processes are reviewed comprehensively.
Abstract: New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.

1,068 citations