scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends

TL;DR: An overview of blockchain architechture is provided and some typical consensus algorithms used in different blockchains are compared and possible future trends for blockchain are laid out.
Abstract: Blockchain, the foundation of Bitcoin, has received extensive attentions recently. Blockchain serves as an immutable ledger which allows transactions take place in a decentralized manner. Blockchain-based applications are springing up, covering numerous fields including financial services, reputation system and Internet of Things (IoT), and so on. However, there are still many challenges of blockchain technology such as scalability and security problems waiting to be overcome. This paper presents a comprehensive overview on blockchain technology. We provide an overview of blockchain architechture firstly and compare some typical consensus algorithms used in different blockchains. Furthermore, technical challenges and recent advances are briefly listed. We also lay out possible future trends for blockchain.
Citations
More filters
Journal ArticleDOI
TL;DR: The blockchain taxonomy is given, the typical blockchain consensus algorithms are introduced, typical blockchain applications are reviewed, and the future directions in the blockchain technology are pointed out.
Abstract: Blockchain has numerous benefits such as decentralisation, persistency, anonymity and auditability. There is a wide spectrum of blockchain applications ranging from cryptocurrency, financial services, risk management, internet of things (IoT) to public and social services. Although a number of studies focus on using the blockchain technology in various application aspects, there is no comprehensive survey on the blockchain technology in both technological and application perspectives. To fill this gap, we conduct a comprehensive survey on the blockchain technology. In particular, this paper gives the blockchain taxonomy, introduces typical blockchain consensus algorithms, reviews blockchain applications and discusses technical challenges as well as recent advances in tackling the challenges. Moreover, this paper also points out the future directions in the blockchain technology.

1,928 citations


Cites background from "An Overview of Blockchain Technolog..."

  • ...This paper is an extended version of the work published in [87] with the substantial extensions on blockchain technical details, consensus algorithms, applications of blockchains, research challenges and future directions....

    [...]

Journal ArticleDOI
TL;DR: A thorough review on how to adapt blockchain to the specific needs of IoT in order to develop Blockchain-based IoT (BIoT) applications is presented and some recommendations are enumerated with the aim of guiding future BIoT researchers and developers on some of the issues that will have to be tackled before deploying the next generation of BIeT applications.
Abstract: The paradigm of Internet of Things (IoT) is paving the way for a world, where many of our daily objects will be interconnected and will interact with their environment in order to collect information and automate certain tasks. Such a vision requires, among other things, seamless authentication, data privacy, security, robustness against attacks, easy deployment, and self-maintenance. Such features can be brought by blockchain, a technology born with a cryptocurrency called Bitcoin. In this paper, a thorough review on how to adapt blockchain to the specific needs of IoT in order to develop Blockchain-based IoT (BIoT) applications is presented. After describing the basics of blockchain, the most relevant BIoT applications are described with the objective of emphasizing how blockchain can impact traditional cloud-centered IoT applications. Then, the current challenges and possible optimizations are detailed regarding many aspects that affect the design, development, and deployment of a BIoT application. Finally, some recommendations are enumerated with the aim of guiding future BIoT researchers and developers on some of the issues that will have to be tackled before deploying the next generation of BIoT applications.

755 citations


Cites background from "An Overview of Blockchain Technolog..."

  • ...It basically consists in a mechanism that determines the conditions to be reached in order to conclude that an agreement has been reached regarding the validations of the blocks to be added to the blockchain [26]....

    [...]

  • ...Another interesting work is presented in [26], where the authors provide a generic review on the architecture and the different mechanisms involved in blockchain, although it is not focused on its application to IoT....

    [...]

Journal ArticleDOI
TL;DR: By consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people’s lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of “providing artificial intelligence for every person and every organization at everywhere”. Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence , aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge , this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge , i.e., Edge DL.

611 citations

Journal ArticleDOI
TL;DR: In this paper, a survey on the relationship between edge intelligence and intelligent edge computing is presented, and the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework, challenges and future trends of more pervasive and fine-grained intelligence.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people's lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of "providing artificial intelligence for every person and every organization at everywhere". Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence, aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge, this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.

518 citations

Journal ArticleDOI
TL;DR: A comparative study of the tradeoffs of blockchain is presented, a comparison among different consensus mechanisms is provided, and challenges, including scalability, privacy, interoperability, energy consumption and regulatory issues are discussed.
Abstract: Blockchain is the underlying technology of a number of digital cryptocurrencies. Blockchain is a chain of blocks that store information with digital signatures in a decentralized and distributed network. The features of blockchain, including decentralization, immutability, transparency and auditability, make transactions more secure and tamper proof. Apart from cryptocurrency, blockchain technology can be used in financial and social services, risk management, healthcare facilities, and so on. A number of research studies focus on the opportunity that blockchain provides in various application domains. This paper presents a comparative study of the tradeoffs of blockchain and also explains the taxonomy and architecture of blockchain, provides a comparison among different consensus mechanisms and discusses challenges, including scalability, privacy, interoperability, energy consumption and regulatory issues. In addition, this paper also notes the future scope of blockchain technology.

514 citations


Cites background from "An Overview of Blockchain Technolog..."

  • ...Each previous transaction can be reviewed at any time but cannot be updated [23]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Abstract: I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves. (For example, it has probably received more attention in the theory community than the readers/writers problem, which illustrates the same principles and has much more practical importance.) I believed that the problem introduced in [41] was very important and deserved the attention of computer scientists. The popularity of the dining philosophers problem taught me that the best way to attract attention to a problem is to present it in terms of a story. There is a problem in distributed computing that is sometimes called the Chinese Generals Problem, in which two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive. I stole the idea of the generals and posed the problem in terms of a group of generals, some of whom may be traitors, who have to reach a common decision. I wanted to assign the generals a nationality that would not offend any readers. At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem. Jack Goldberg was smart enough to realize that there were Albanians in the world outside Albania, and Albania might not always be a black hole, so he suggested that I find another name. The obviously more appropriate Byzantine generals then occurred to me. The main reason for writing this paper was to assign the new name to the problem. But a new paper needed new results as well. I came up with a simpler way to describe the general 3n+1-processor algorithm. (Shostak’s 4-processor algorithm was subtle but easy to understand; Pease’s generalization was a remarkable tour de force.) We also added a generalization to networks that were not completely connected. (I don’t remember whose work that was.) I also added some discussion of practical implementation details.

5,208 citations

Book ChapterDOI
TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Abstract: Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

4,901 citations

Proceedings ArticleDOI
22 Feb 1999
TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Abstract: This paper describes a new replication algorithm that is able to tolerate Byzantine faults. We believe that Byzantinefault-tolerant algorithms will be increasingly important in the future because malicious attacks and software errors are increasingly common and can cause faulty nodes to exhibit arbitrary behavior. Whereas previous algorithms assumed a synchronous system or were too slow to be used in practice, the algorithm described in this paper is practical: it works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude. We implemented a Byzantine-fault-tolerant NFS service using our algorithm and measured its performance. The results show that our service is only 3% slower than a standard unreplicated NFS.

3,562 citations

01 Jan 2013
TL;DR: Ethereum as mentioned in this paper is a transactional singleton machine with shared state, which can be seen as a simple application on a decentralised, but singleton, compute resource, and it provides a plurality of resources, each with a distinct state and operating code but able to interact through a message-passing framework with others.
Abstract: The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its utility through a number of projects, not least Bitcoin. Each such project can be seen as a simple application on a decentralised, but singleton, compute resource. We can call this paradigm a transactional singleton machine with shared-state. Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources, each with a distinct state and operating code but able to interact through a message-passing framework with others. We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

2,755 citations

Journal ArticleDOI
TL;DR: The ANSI X9.62 ECDSA is described and related security, implementation, and interoperability issues are discussed, and the strength-per-key-bit is substantially greater in an algorithm that uses elliptic curves.
Abstract: The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard and in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem, no subexponential-time algorithm is known for the elliptic curve discrete logarithm problem. For this reason, the strength-per-key-bit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA, and discusses related security, implementation, and interoperability issues.

2,092 citations


"An Overview of Blockchain Technolog..." refers methods in this paper

  • ...The typical digital signature algorithm used in blockchains is the elliptic curve digital signature algorithm (ECDSA) [16]....

    [...]