scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An overview of limited feedback in wireless communication systems

TL;DR: This tutorial provides a broad look at the field of limited feedback wireless communications, and reviews work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology.
Abstract: It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the theory and currently known techniques for multi-cell MIMO (multiple input multiple output) cooperation in wireless networks is presented and a few promising and quite fundamental research avenues are also suggested.
Abstract: This paper presents an overview of the theory and currently known techniques for multi-cell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacity-limiting factor, multi-cell cooperation can dramatically improve the system performance. Remarkably, such techniques literally exploit inter-cell interference by allowing the user data to be jointly processed by several interfering base stations, thus mimicking the benefits of a large virtual MIMO array. Multi-cell MIMO cooperation concepts are examined from different perspectives, including an examination of the fundamental information-theoretic limits, a review of the coding and signal processing algorithmic developments, and, going beyond that, consideration of very practical issues related to scalability and system-level integration. A few promising and quite fundamental research avenues are also suggested.

1,911 citations


Cites background or methods from "An overview of limited feedback in ..."

  • ...Since a rich body of literature already exists for this problem, we simply refer the reader to past special journal issues on this topic such as [16], [145]....

    [...]

  • ...Efficient partial feedback representation methods building on classical MIMO research [16] are also desirable....

    [...]

Journal ArticleDOI
TL;DR: In this article, a low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems is proposed, which involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware.
Abstract: Antenna arrays will be an important ingredient in millimeter-wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multiuser MIMO precoding techniques at mmWave. This paper develops low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. The performance of the proposed algorithm is analyzed in the large dimensional regime and in single-path channels. When the analog and digital precoding vectors are selected from quantized codebooks, the rate loss due to the joint quantization is characterized, and insights are given into the performance of hybrid precoding compared with analog-only beamforming solutions. Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks.

919 citations

Journal ArticleDOI
TL;DR: Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks.
Abstract: Antenna arrays will be an important ingredient in millimeter wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multiuser MIMO precoding techniques at mmWave. This paper develops low complexity hybrid analog/digital precoding for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. The performance of the proposed algorithm is analyzed in the large dimensional regime and in single path channels. When the analog and digital precoding vectors are selected from quantized codebooks, the rate loss due to the joint quantization is characterized and insights are given into the performance of hybrid beamforming compared with analog-only beamforming solutions. Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks.

787 citations


Cites methods from "An overview of limited feedback in ..."

  • ...RVQ simplifies the analytical performance analysis of the proposed algorithm and allows leveraging some results from the limited feedback MIMO literature [25], [28], [34]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a unified MEC-WPT design by considering a wireless powered multiuser MEC system, where a multiantenna access point (AP) integrated with an MEC server broadcasts wireless power to charge multiple users and each user node relies on the harvested energy to execute computation tasks.
Abstract: Mobile-edge computing (MEC) and wireless power transfer (WPT) have been recognized as promising techniques in the Internet of Things era to provide massive low-power wireless devices with enhanced computation capability and sustainable energy supply. In this paper, we propose a unified MEC-WPT design by considering a wireless powered multiuser MEC system, where a multiantenna access point (AP) (integrated with an MEC server) broadcasts wireless power to charge multiple users and each user node relies on the harvested energy to execute computation tasks. With MEC, these users can execute their respective tasks locally by themselves or offload all or part of them to the AP based on a time-division multiple access protocol. Building on the proposed model, we develop an innovative framework to improve the MEC performance, by jointly optimizing the energy transmit beamforming at the AP, the central processing unit frequencies and the numbers of offloaded bits at the users, as well as the time allocation among users. Under this framework, we address a practical scenario where latency-limited computation is required. In this case, we develop an optimal resource allocation scheme that minimizes the AP’s total energy consumption subject to the users’ individual computation latency constraints. Leveraging the state-of-the-art optimization techniques, we derive the optimal solution in a semiclosed form. Numerical results demonstrate the merits of the proposed design over alternative benchmark schemes.

752 citations

Dissertation
04 Nov 2008
TL;DR: In this paper, the authors propose a solution to solve the problem of the problem: this paper ] of the "missing link" problem, i.i.p.II.
Abstract: II

655 citations

References
More filters
Journal ArticleDOI
Siavash Alamouti1
TL;DR: This paper presents a simple two-branch transmit diversity scheme that provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas.
Abstract: This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order of 2M. The new scheme does not require any bandwidth expansion or any feedback from the receiver to the transmitter and its computation complexity is similar to MRRC.

13,706 citations


"An overview of limited feedback in ..." refers background in this paper

  • ...The most popular form of space-time coding, orthogonal space-time block codes (see [16], [167], [242], [319]), is a perfect fit for antenna subset selection particularly becau se certain values ofM lead to “better” code designs....

    [...]

  • ...The most popular choice would beM = 2 where the simple rate one Alamouti space-time code is available [16]....

    [...]

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations


"An overview of limited feedback in ..." refers background in this paper

  • ...The seminal paper [131] shows that a single bit of feedback from des-...

    [...]

Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Journal ArticleDOI
TL;DR: A generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas and it is shown that many of the codes presented here are optimal in this sense.
Abstract: We introduce space-time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space-time block code and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. Maximum-likelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space-time block code and gives a maximum-likelihood decoding algorithm which is based only on linear processing at the receiver. Space-time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is applied to construct space-time block codes. It is shown that space-time block codes constructed in this way only exist for few sporadic values of n. Subsequently, a generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation such as PAM. For an arbitrary complex constellation such as PSK and QAM, space-time block codes are designed that achieve 1/2 of the maximum possible transmission rate for any number of transmit antennas. For the specific cases of two, three, and four transmit antennas, space-time block codes are designed that achieve, respectively, all, 3/4, and 3/4 of maximum possible transmission rate using arbitrary complex constellations. The best tradeoff between the decoding delay and the number of transmit antennas is also computed and it is shown that many of the codes presented here are optimal in this sense as well.

7,348 citations


"An overview of limited feedback in ..." refers background in this paper

  • ...The most popular form of space-time coding, orthogonal space-time block codes (see [5], [133], [194], [255]), is a...

    [...]

Book
03 Dec 2001

6,660 citations