scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An overview of semiconductor photocatalysis

31 Jul 1997-Journal of Photochemistry and Photobiology A-chemistry (Elsevier)-Vol. 108, Iss: 1, pp 1-35
TL;DR: An overview of the field of semiconductor photocatalysis can be found in this paper, where a brief examination of its roots, achievements and possible future is presented, and the semiconductor titanium dioxide (TiO 2 ) features predominantly in past and present work.
Abstract: The interest in heterogeneous photocatalysis is intense and increasing, as shown by the number of publications on this theme which regularly appear in this journal, and the fact that over 2000 papers have been published on this topic since 1981. This article is an overview of the field of semiconductor photocatalysis : a brief examination of its roots, achievements and possible future. The semiconductor titanium dioxide (TiO 2 ) features predominantly in past and present work on semiconductor photocatalysis; as a result, in the most of the examples selected in this overview to illustrate various points the semiconductor is TiO 2 .
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this paper.
Abstract: Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,802 citations


Cites background from "An overview of semiconductor photoc..."

  • ...Their prediction has indeed been borne out, as evidenced by the extensive global efforts in this area [4–11,15,16,19–42]....

    [...]

01 Jan 2008
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this article.
Abstract: Abstract Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,294 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations


Cites background from "An overview of semiconductor photoc..."

  • ...Most of the review papers emphasize semiconductor photocatalytic water/air purification [7–21], but very few of them are related to photocatalytic hydrogen production [22]....

    [...]

  • ...Furthermore, many review papers on semiconductor photocatalysis can be found in recent literature [7–22]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

References
More filters
Journal ArticleDOI
07 Jul 1972-Nature
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).

27,819 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract: In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

10,719 citations

Journal ArticleDOI
TL;DR: Cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes were prepared and characterized with respct to their absorption, luminescence, and redox behavior.
Abstract: cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes (X=Cl - , Br, I - , CN - , and SCN - ) were prepared and characterized with respct to their absorption, luminescence, and redox behavior. They act as efficient charge-transfer sensitizers for nanocrystalline TiO 2 films (thickness 8-12 μm) of very high internal surface area (roughness factor ca. 1000), prepared by sintering of 15-30-nm colloidal titania particles on a conducting glass support. The performance of cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) (1) was found to be outstanding and is unmatched by any other known sensitizer

5,785 citations