scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An overview of the last advances in probiotic and prebiotic field

TL;DR: The present review summarizes guidelines reported on the literature in regard to clinician or therapeutic trials of probiotic and prebiotic.
Abstract: Probiotics and prebiotics play an important role in human nutrition. In recent years there has been a significant increase in research on the characterization and verification potential health benefits associated with the use of probiotic and prebiotic. The main effects attributed to selected probiotics/prebiotic products have been proved by clinical trials, while others have been acquired on the basis of in vitro tests which require in vivo transposition in order to be validated. The main clinical reports in the literature for the application of probiotic have been done for the treatment of infectious diseases including viral, bacterial or antibiotic associated diarrhoea, relief of chronic bowel inflammatory diseases, immuno-modulation, lowering of serum cholesterol, decreased risk of colon cancer, improve lactose digestion, reduce allergies, and effect on intestinal microbiota. Although the large investigation for the health benefits, information on probiotic species, a specific strain-therapeutic application, and sufficient dosages, is not sufficiently studied to allow practical and rational consumption. Moreover, prebiotic oligosaccharides although provided curative and nutritional values, they are poorly understood in regard to their origin, the processes employed to generate them, their fermentation profiles, and dosages required for health effects. The present review summarizes guidelines reported on the literature in regard to clinician or therapeutic trials of probiotic and prebiotic.
Citations
More filters
Journal ArticleDOI
TL;DR: A narrative review explores the relevant contemporary scientific literature to provide a general perspective of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health.
Abstract: There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.

1,045 citations

Journal ArticleDOI
TL;DR: The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.
Abstract: Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

333 citations


Cites background from "An overview of the last advances in..."

  • ...Probiotic organisms used in foods must have the ability to resist gastric juices, exposure to bile, and be able to proliferate and colonize the digestive tract (Saad et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: The present review focuses recent developments in dairy and non-dairy probiotic products, and technological and functional properties, besides the viability of the probiotics used in fermented products of non-Dairy origin are extremely important to get a competitive advantage in the world market.
Abstract: Health awareness has grown to a greater extent among consumers and they are looking for healthy probiotic counterparts. Keeping in this view, the present review focuses recent developments in dairy and non-dairy probiotic products. All over the world, dairy probiotics are being commercialized in many different forms. However, the allergy and lactose intolerance are the major set-backs to dairy probiotics. Whereas, flavor and refreshing nature are the major advantages of non-dairy drinks, especially fruit juices. Phenotypic and genotypic similarities between dairy and non-dairy probiotics along with the matrix dependency of cell viability and cell functionality are reviewed. The heterogeneous food matrices of non-dairy food carriers are the major constraints for the survival of the probiotics, while the probiotic strains from non-dairy sources are satisfactory. Technological and functional properties, besides the viability of the probiotics used in fermented products of non-dairy origin are extremely important to get a competitive advantage in the world market. The functional attributes of dairy and non-dairy probiotic products are further enhanced by adding prebiotics such as galacto-oligosaccharide, fructo-oligosaccharide and inulin.

267 citations


Cites background from "An overview of the last advances in..."

  • ...microflora to get health benefits to the consumers, besides providing textural attributes to the foods (Saad et al. 2013)....

    [...]

  • ...Some of the basic mechanisms by which the probiotics confer health benefits to the host include modulating the mucosal barrier function, decreasing the apoptosis of epithelial cells and by increasing mucin production (Mattar et al. 2002; Gaudier et al. 2005; Yan and Polk 2006; Caballero-Franco et al. 2007; Gogineni et al. 2013; Saad et al. 2013), aiding the increased production of antimicrobial peptides like defensins and cathelcidins by host cells (Schlee et al....

    [...]

  • ...…Research Institute, Mysore 570 020, India O. V. S. Reddy (*) Department of Biochemistry, Sri Venkateswara University, Tirupati 517 502, India e-mail: ovsreddy@yahoo.com microflora to get health benefits to the consumers, besides providing textural attributes to the foods (Saad et al. 2013)....

    [...]

  • ...…and by increasing mucin production (Mattar et al. 2002; Gaudier et al. 2005; Yan and Polk 2006; Caballero-Franco et al. 2007; Gogineni et al. 2013; Saad et al. 2013), aiding the increased production of antimicrobial peptides like defensins and cathelcidins by host cells (Schlee et al. 2008;…...

    [...]

Journal ArticleDOI
TL;DR: The results demonstrate that the EPS from L. plantarum C88 has antioxidant effects that may involve scavenging of reactive oxygen species (ROS), up-regulation of enzymatic and non-enzymatic antioxidant activities, and reduction of lipid peroxidation.

267 citations

Journal ArticleDOI
TL;DR: The characteristics and advantages of sheep Milk as a potentially functional food, as well as the development of sheep milk dairy products containing prebiotics and/or probiotics are addressed.
Abstract: Sheep milk has a high nutritional value and high concentrations of proteins, fats, minerals, and vitamins, as compared to the milks of other domestic species. The physicochemical and nutritional characteristics of sheep milk can be advantageous for the manufacture of products containing prebiotic ingredients and/or probiotic bacteria, which are major categories in the functional food market. Following this technological trend, this review will address the characteristics and advantages of sheep milk as a potentially functional food, as well as the development of sheep milk dairy products containing prebiotics and/or probiotics.

253 citations

References
More filters
Journal ArticleDOI
TL;DR: By combining the rationale of pro- and prebiotics, the concept of synbiotics is proposed to characterize some colonic foods with interesting nutritional properties that make these compounds candidates for classification as health-enhancing functional food ingredients.
Abstract: Because the human gut microbiota can play a major role in host health, there is currently some interest in the manipulation of the composition of the gut flora towards a potentially more remedial community. Attempts have been made to increase bacterial groups such as Bifidobacterium and Lactobacillus that are perceived as exerting health-promoting properties. Probiotics, defined as microbial food supplements that beneficially affect the host by improving its intestinal microbial balance, have been used to change the composition of colonic microbiota. However, such changes may be transient, and the implantation of exogenous bacteria therefore becomes limited. In contrast, prebiotics are nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacterial species already resident in the colon, and thus attempt to improve host health. Intake of prebiotics can significantly modulate the colonic microbiota by increasing the number of specific bacteria and thus changing the composition of the microbiota. Nondigestible oligosaccharides in general, and fructooligosaccharides in particular, are prebiotics. They have been shown to stimulate the growth of endogenous bifidobacteria, which, after a short feeding period, become predominant in human feces. Moreover, these prebiotics modulate lipid metabolism, most likely via fermentation products. By combining the rationale of pro- and prebiotics, the concept of synbiotics is proposed to characterize some colonic foods with interesting nutritional properties that make these compounds candidates for classification as health-enhancing functional food ingredients.

7,232 citations

Journal ArticleDOI
TL;DR: A new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs) is reported, which open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria.
Abstract: Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyer's patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral administration. This suggests the existence of an alternative route for bacterial invasion, one that is independent of M cells. We report here a new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs). DCs open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria. In addition, because DCs express tight-junction proteins such as occludin, claudin 1 and zonula occludens 1, the integrity of the epithelial barrier is preserved.

2,463 citations


"An overview of the last advances in..." refers background in this paper

  • ...Finally, Dendritic cells (DCs) in the lamina propria (LP) can actively extend their dendrites through epithelial tight junctions and thus, process directly the probiotic in the gut lumen (Marco, Pavan, & Kleerebezem, 2006; Rescigno et al., 2001)....

    [...]

Journal ArticleDOI
TL;DR: The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
Abstract: Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.

2,312 citations

Journal ArticleDOI
01 Aug 2009-Gut
TL;DR: It is found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP1-2-dependent mechanism, contributing to the improvement of Gut barrier functions during obesity and diabetes.
Abstract: BACKGROUND AND AIMS: Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. METHODS: Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. RESULTS: Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. CONCLUSION: We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.

2,127 citations

Journal ArticleDOI
TL;DR: The present document has been written by a group of both academic and industry experts and aims to validate and expand the original idea of the prebiotic concept, defined as the selective stimulation of growth and/or activity of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.
Abstract: The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.

1,786 citations