scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An overview of the recent developments in polylactide (PLA) research.

TL;DR: Information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications are provided.
About: This article is published in Bioresource Technology.The article was published on 2010-11-01. It has received 1988 citations till now. The article focuses on the topics: Polylactic acid & Environmental pollution.
Citations
More filters
Journal ArticleDOI
TL;DR: This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts to examine critically the green character of conversion processes.
Abstract: This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

2,077 citations

Journal ArticleDOI
TL;DR: The main purpose of this review is to elaborate the mechanical and physical properties that affect PLA stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements.

1,557 citations

01 Jun 2016
TL;DR: In this paper, the main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements.
Abstract: Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.

1,360 citations

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper highlights the main researches and developments in polylactide-based nanocomposites during this last decade, highlighting the main applications of PLA in automotive and electronics.

962 citations

References
More filters
Journal ArticleDOI
TL;DR: The composition and synthesis of hydrogels, the character of their absorbed water, and permeation of solutes within their swollen matrices are reviewed to identify the most important properties relevant to their biomedical applications.

5,173 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material.
Abstract: Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food.

2,803 citations


"An overview of the recent developme..." refers background in this paper

  • ...Poly (98% L-lactide) had a density of 1.240–0.002 g cc 1 and poly (94% L-lactide) had a density of 1.243–0.002 g cc 1 (Auras et al., 2004)....

    [...]

  • ...PLLA could be hydrolyzed at 180 C to 350 C for up to 30 min, obtaining L-lactic acid as the final product (Auras et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: Polylactic acid is proving to be a viable alternative to petrochemical-based plastics for many applications It is produced from renewable resources and is biodegradable, decomposing to give H2O, CO2, and humus, the black material in soil as mentioned in this paper.
Abstract: Polylactic acid is proving to be a viable alternative to petrochemical-based plastics for many applications It is produced from renewable resources and is biodegradable, decomposing to give H2O, CO2, and humus, the black material in soil In addition, it has unique physical properties that make it useful in diverse applications including paper coating, fibers, films, and packaging (see Figure)

2,537 citations


"An overview of the recent developme..." refers background in this paper

  • ...The material properties of PLA were reported earlier by Drumright et al. (2000)....

    [...]

Journal ArticleDOI
TL;DR: Kevin Shakesheff investigates new methods of engineering polymer surfaces and the application of these engineered materials in drug delivery and tissue engineering.
Abstract: s, and 360 patents, and edited 12 books. He has also received over 80 major awards including the Gairdner Foundation International Award, Lemelson-MIT prize, ACS’s Applied Polymer Science and Polymer Chemistry Awards, AICHE’s Professional Progress, Bioengineering, Walker and Stine Materials Science and Engineering Awards. In 1989, Dr. Langer was elected to the Institute of Medicine of the National Academy of Sciences, and in 1992 he was elected to both the National Academy of Engineering and the National Academy of Sciences. He is the only active member of all three National Academies. Kevin Shakesheff was born in Ashington, Northumberland, U.K., in 1969. He received his Bacheclor of Pharmacy degree from the University of Nottingham in 1991 and a Ph.D. from the same institution in 1995. In 1996 he became a NATO Postdoctoral Fellow at MIT, Department of Chemical Engineering. He is currently an EPSRC Advanced Fellow at the School of Pharmaceutical Sciences, The University of Nottingham. His research group investigates new methods of engineering polymer surfaces and the application of these engineered materials in drug delivery and tissue engineering. 3182 Chemical Reviews, 1999, Vol. 99, No. 11 Uhrich et al.

2,532 citations


"An overview of the recent developme..." refers background in this paper

  • ...For example, nanoparticles made from diblock PLA–PEG copolymers have increased blood circulation times (decreased clearance) in vivo above that of particles made from PLA alone (Uhrich et al., 1999)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, structural, thermal, crystallization, and rheological properties of PLA are reviewed in relation to its converting processes, including extrusion, injection molding, injection stretch blow molding and casting.

2,293 citations


"An overview of the recent developme..." refers background in this paper

  • ...Recently, Lim et al. (2008) discussed the specific process technologies such as extrusion, injection molding, injection stretch blow molding, casting, blown film, thermoforming, foaming, blending, fiber spinning, and compounding related to PLA....

    [...]