scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An Overview on Mechanical Property Evaluation of Natural Fiber Reinforced Polymers

01 Jan 2017-Materials Today: Proceedings (Elsevier)-Vol. 4, Iss: 2, pp 2755-2760
TL;DR: An overview of the mechanical properties like tensile, flexural, impact, fracture surface observations and corresponding modulus of elasticity of natural fiber reinforced polymer composites is presented in this article.
About: This article is published in Materials Today: Proceedings.The article was published on 2017-01-01. It has received 52 citations till now. The article focuses on the topics: Natural fiber & Fiber.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the different sources of natural fibers, their properties, modification of natural fiber, the effect of treatments on natural fibers and their effective use as reinforcement for polymer composite materials.
Abstract: The increase in awareness of the damage caused by synthetic materials on the environment has led to the development of eco-friendly materials. The researchers have shown a lot of interest in developing such materials which can replace the synthetic materials. As a result, there is an increase in demand for commercial use of the natural fiber-based composites in recent years for various industrial sectors. Natural fibers are sustainable materials which are easily available in nature and have advantages like low-cost, lightweight, renewability, biodegradability and high specific properties. The sustainability of the natural fiber-based composite materials has led to upsurge its applications in various manufacturing sectors. In this paper, we have reviewed the different sources of natural fibers, their properties, modification of natural fibers, the effect of treatments on natural fibers, etc. We also summarize the major applications of natural fibers and their effective use as reinforcement for polymer composite materials.

441 citations


Cites background from "An Overview on Mechanical Property ..."

  • ...Over the past few decades, attempts have been made in developing the materials which replace the existing materials to have better mechanical and tribological properties for various applications (Arpitha and Yogesha, 2017; Abdellaoui et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effect of hybridization between hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of the hybridization effect for EIB, moreover the development for future potential as new hybrid composite fiber materials from the natural/synthetic fibres reinforced composite material in employing of high-performance EIB application.

123 citations

Journal ArticleDOI
TL;DR: It can be concluded that reinforcing epoxy matrix with AA filler effectively improves the properties of the developed composite materials, and date palm fruit bunch stalk filler might be considered as a sustainable and green promising reinforcing material similarly to other natural fibers.
Abstract: The present study deals with the fabrication of epoxy composites reinforced with 50 wt% of date palm leaf sheath (G), palm tree trunk (L), fruit bunch stalk (AA), and leaf stalk (A) as filler by the hand lay-up technique. The developed composites were characterized and compared in terms of mechanical, physical and morphological properties. Mechanical tests revealed that the addition of AA improves tensile (20.60–40.12 MPa), impact strength (45.71–99.45 J/m), flexural strength (32.11–110.16 MPa) and density (1.13–1.90 g/cm3). The water absorption and thickness swelling values observed in this study were higher for AA/epoxy composite, revealing its higher cellulosic content, compared to the other composite materials. The examination of fiber pull-out, matrix cracks, and fiber dislocations in the microstructure and fractured surface morphology of the developed materials confirmed the trends for mechanical properties. Overall, from results analysis it can be concluded that reinforcing epoxy matrix with AA filler effectively improves the properties of the developed composite materials. Thus, date palm fruit bunch stalk filler might be considered as a sustainable and green promising reinforcing material similarly to other natural fibers and can be used for diverse commercial, structural, and nonstructural applications requiring high mechanical resistance.

62 citations

Journal ArticleDOI
TL;DR: A plethora of research works have been done on banana and plantain fibers as fillers in plastic composites as discussed by the authors, and a comprehensive catalogues of preparation techniques and mechanical properties were presented.
Abstract: Abstract Natural fiber-reinforced polymer composites have been widely explored by many researchers due to their improved modulus and lightness compared to other conventional construction materials such as wood, metal, and steel. Cultivators only harvest banana and plantain fruits for food and leaves for food wrapping. The other portions of the plant are considered as wastes and a potential resource of natural fibers used as reinforcement in composites. Over the years, a plethora of research works has been done on banana and plantain fibers as fillers in plastic composites. Comprehensive catalogues of preparation techniques and mechanical properties were presented. The mechanical properties of banana fiber reinforcement in polyester and epoxy composites were compared to and contrasted with those of other natural fibers to elucidate its superiority or inferiority to those materials. This work gives an overview of the current state of knowledge of banana fiber-reinforced composites alongside the available research gaps.

53 citations

Journal ArticleDOI
TL;DR: In this article, the authors used alkali treated eco-friendly hemp fibers to reinforce a thermosetting resin blend composed of cyanate ester and benzoxazine resin, and found that the resulting composites possessed much ameliorated flexural properties as compared to those of the unfilled resin.

35 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, the International System of Units (SI) is used to measure the properties of materials and their properties in the context of materials science and engineering, including properties of metal alloys.
Abstract: List of Symbols.Introduction.Atomic Structure and Interatomic Bonding.The Structure of Crystalline Solids.Imperfections in Solids.Diffusion.Mechanical Properties of Metals.Dislocations and Strengthening Mechanisms.Failure.Phase Diagrams.Phase Transformations in Metals: Development of Microstructure and Alteration of Mechanical Properties.Thermal Processing of Metal Alloys.Metals Alloys.Structures and Properties of Ceramics.Applications and Processing of Ceramics.Polymer Structures.Characteristics, Applications, and Processing of Polymers.Composites.Corrosion and Degradation of Materials.Electrical Properties.Thermal Properties.Magnetic Properties.Optical Properties.Materials Selection and Design Considerations.Economic, Environmental, and Societal Issues in Materials Science and Engineering.Appendix A: The International System of Units (SI).Appendix B: Properties of Selected Engineering Materials.Appendix C: Costs and Relative Costs for Selected Engineering Materials.Appendix D: Mer Structures for Common Polymers.Appendix E: Glass Transition and Melting Temperatues for Common Polymeric Materials.Glossary.Answers to Selected Problems.Index.

6,674 citations

Book ChapterDOI
01 Jan 2008
TL;DR: The combination of materials to form a new material system with enhanced material properties is a well documented historical fact as discussed by the authors, which is why many artisans from the Mediterranean and Far East used a form of composite technology in molding art works which were fabricated by layering cut paper in various sizes for producing desired shapes and contours.
Abstract: The combination of materials to form a new material system with enhanced material properties is a well documented historical fact. For example, the ancient Jewish workers during their tenure under the Pharaohs used chopped straws in bricks as a means of enhancing their structural integrity. The Japanese Samurai warriors were known to use laminated metals in the forging of their swords to obtain desirable material properties. Even certain artisans from the Mediterranean and Far East used a form of composite technology in molding art works which were fabricated by layering cut paper in various sizes for producing desired shapes and contours.

3,908 citations

Book
01 Jan 2008
TL;DR: The authors provides both scientists and engineers with all the information they need to understand composite materials, covering their underlying science and technological usage, including surface coatings, highly porous materials, bio-composites and nano-com composites, as well as thoroughly revised chapters on fibres and matrices.
Abstract: This fully expanded and updated edition provides both scientists and engineers with all the information they need to understand composite materials, covering their underlying science and technological usage It includes four completely new chapters on surface coatings, highly porous materials, bio-composites and nano-composites, as well as thoroughly revised chapters on fibres and matrices, the design, fabrication and production of composites, mechanical and thermal properties, and industry applications Extensively expanded referencing engages readers with the latest research and industrial developments in the field, and increased coverage of essential background science makes this a valuable self-contained text A comprehensive set of homework questions, with model answers available online, explains how calculations associated with the properties of composite materials should be tackled, and educational software accompanying the book is available online An invaluable text for final-year undergraduates in materials science and engineering, and graduate students and researchers in academia and industry

2,746 citations

Journal ArticleDOI
TL;DR: In this article, different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed, including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents and permanganate.
Abstract: Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.

2,286 citations

Journal ArticleDOI
TL;DR: A review of natural fiber reinforced composites is presented in this paper with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface.
Abstract: Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and non-abrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers and these draw backs become critical issue. This review presents the reported work on natural fiber reinforced composites with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface. © 1999 John Wiley & Sons, Inc. Adv in Polymer Techn 18: 351–363, 1999

2,210 citations