An Overview on Multi-biometric Score-level Fusion - Verification and Identification
24 Nov 2016-pp 647-653
TL;DR: In this article, the authors present an overview of the multi-biometric score-level fusion problem, along with the proposed solution in the literature, and a discussion is made to provide a clearer view of future developments especially under the identification scenario where many related applications are rapidly growing.
Abstract: Multi-biometrics is the use of multiple biometric recognition sources to provide a more dependable verification or identification decision. Fusion of multi-biometric sources can be performed on different levels, such as the data, feature, or score level. This work presents an overview of the multi-biometric score-level fusion problem, along with the proposed solution in the literature. A discussion is made to provide a comparison between multi-biometric fusion in both scenarios. This discussion aims at providing a clearer view of future developments especially under the identification scenario where many related applications are rapidly growing such as forensics and ubiquitous surveillance.
Citations
More filters
Proceedings Article•
02 Jul 2019
TL;DR: This work introduces a multi-detector fusion solution that aims at gaining both, accuracy and generalization over different morphing types by fusing classification scores produced by detectors trained on databases with variations in morphing type and image pairing protocols.
Abstract: Face morphing attack images are built to be verifiable to multiple identities. Associating such images to identity documents leads to building faulty identity links, causing vulnerabilities in security critical processes. Recent works have studied the face morphing attack detection performance over variations in morphing approaches, pointing out low generalization. This work introduces a multi-detector fusion solution that aims at gaining both, accuracy and generalization over different morphing types. This is performed by fusing classification scores produced by detectors trained on databases with variations in morphing type and image pairing protocols. This work develop and evaluate the proposed solution along with baseline solutions by building a database with three different pairing protocols and two different morphing approaches. This proposed solution successfully lead to decreasing the Bona Fide Presentation Classification Error Rate at 1.0% Attack Presentation Classification Error Rate from 15.7% and 3.0% of the best performing single detector to 2.7% and 0.0%, respectively on two face morphing techniques, pointing out a highly generalized performance.
31 citations
29 Jul 2013
TL;DR: The Performance Anchored Normalization (PAN) algorithms discussed here were tested on the extended Multi Modal Verification for Teleservices and Security applications database and proved to outperform conventional score normalization techniques in most tests.
Abstract: This work presents a family of novel normalization techniques for score-level multi-biometric fusion. The proposed normalization is not only concerned to bring comparison scores to a common range and scale, it also focuses in bringing certain operational performance points in the distribution into alignment. The Performance Anchored Normalization (PAN) algorithms discussed here were tested on the extended Multi Modal Verification for Teleservices and Security applications database (XM2VTS) and proved to outperform conventional score normalization techniques in most tests. The tests were performed with combination fusion rules and presented as biometric verification performance measures.
20 citations
06 Jul 2020
TL;DR: This work proposes an iris PAD solution based on multi-layer fusion, which performs better than the best single layer feature extractor in most cases and achieves similar or better results than the state-of-the-art algorithms on the Notre Dame and IIITD-WVU databases.
Abstract: Iris presentation attack detection (PAD) algorithms are developed to address the vulnerability of iris recognition systems to presentation attacks. Taking into account that the deep features successfully improved computer vision performance in various fields including iris recognition, it is natural to use features extracted from deep neural networks for iris PAD. Each layer in a deep learning network carries features of different level of abstraction. The features extracted from the first layer to the higher layers become more complex and more abstract. This might point our complementary information in these features that can collaborate towards an accurate PAD decision. Therefore, we propose an iris PAD solution based on multi-layer fusion. The information extracted from the last several convolutional layers are fused on two levels, feature-level and score-level. We demonstrated experiments on both, off-the-shelf pre-trained network and network trained from scratch. An extensive experiment also explores the complementary between different layer combinations of deep features. Our experimental results show that feature-level based multi-layer fusion method performs better than the best single layer feature extractor in most cases. In addition, our fusion results achieve similar or better results than the state-of-the-art algorithms on the Notre Dame and IIITD-WVU databases of the Iris Liveness Detection Competition 2017 (LivDet-Iris 2017).
19 citations
22 Oct 2014
TL;DR: The novelty of this work focuses on integrating the relation of the fused scores to other comparisons within a 1:N comparison by considering the neighbors distance ratio in the ranked comparisons set within a classification-based fusion approach.
Abstract: Multi-biometrics aims at building more accurate unified bio-metric decisions based on the information provided by multiple biometric sources. Information fusion is used to optimize the process of creating this unified decision. In previous works dealing with score-level multi-biometric fusion, the scores of different biometric sources belonging to the comparison of interest are used to create the fused score. The novelty of this work focuses on integrating the relation of the fused scores to other comparisons within a 1:N comparison. This is performed by considering the neighbors distance ratio in the ranked comparisons set within a classification-based fusion approach. The evaluation was performed on the Biometric Scores Set BSSR1 database and the enhanced performance induced by the integration of neighbors distance ratio was clearly presented.
14 citations
07 Nov 2013
TL;DR: A missing data estimation solution based on support vector regression was presented in this work and compared to four baseline solutions in an effort to show the effect ofMissing data estimation on the relatively understudied multi-biometric identification scenario.
Abstract: In the practical use of multi-biometric solutions, biometric sources involved in producing the verification or identification decision do occasionally fail to produce results. This work discusses solutions for missing data in multi-biometric score-level fusion. A missing data estimation solution based on support vector regression was presented in this work and compared to four baseline solutions. The evaluation was carried under both the verification and the identification scenarios in an effort to show the effect of missing data estimation on the relatively understudied multi-biometric identification scenario. Evaluation was performed on the Biosecure DS2 score database and satisfying performance was achieved under both biometric scenarios.
13 citations
References
More filters
TL;DR: Study of the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user found that the application of min-max, z-score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods.
Abstract: Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. Although information fusion in a multimodal system can be performed at various levels, integration at the matching score level is the most common approach due to the ease in accessing and combining the scores generated by different matchers. Since the matching scores output by the various modalities are heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining them. In this paper, we have studied the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user. Experiments conducted on a database of 100 users indicate that the application of min-max, z-score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods. However, experiments also reveal that the min-max and z-score normalization techniques are sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better compared to systems that assign the same set of weights to the multiple biometric traits of all users.
2,021 citations
TL;DR: It is found that recognition performance is not significantly different between the face and the ear, for example, 70.5 percent versus 71.6 percent in one experiment and multimodal recognition using both the ear and face results in statistically significant improvement over either individual biometric.
Abstract: Researchers have suggested that the ear may have advantages over the face for biometric recognition. Our previous experiments with ear and face recognition, using the standard principal component analysis approach, showed lower recognition performance using ear images. We report results of similar experiments on larger data sets that are more rigorously controlled for relative quality of face and ear images. We find that recognition performance is not significantly different between the face and the ear, for example, 70.5 percent versus 71.6 percent, respectively, in one experiment. We also find that multimodal recognition using both the ear and face results in statistically significant improvement over either individual biometric, for example, 90.9 percent in the analogous experiment.
597 citations
TL;DR: Experiments on three multibiometric databases indicate that the proposed fusion framework achieves consistently high performance compared to commonly used score fusion techniques based on score transformation and classification.
Abstract: Multibiometric systems fuse information from different sources to compensate for the limitations in performance of individual matchers. We propose a framework for the optimal combination of match scores that is based on the likelihood ratio test. The distributions of genuine and impostor match scores are modeled as finite Gaussian mixture model. The proposed fusion approach is general in its ability to handle 1) discrete values in biometric match score distributions, 2) arbitrary scales and distributions of match scores, 3) correlation between the scores of multiple matchers, and 4) sample quality of multiple biometric sources. Experiments on three multibiometric databases indicate that the proposed fusion framework achieves consistently high performance compared to commonly used score fusion techniques based on score transformation and classification.
538 citations
TL;DR: This work uses two different strategies for fusing iris and face classifiers to treat the matching distances of face and iris classifiers as a two-dimensional feature vector and uses a classifier such as Fisher's discriminant analysis and a neural network with radial basis function to classify the vector as being genuine or an impostor.
Abstract: Face and iris identification have been employed in various biometric applications. Besides improving verification performance, the fusion of these two biometrics has several other advantages. We use two different strategies for fusing iris and face classifiers. The first strategy is to compute either an unweighted or weighted sum and to compare the result to a threshold. The second strategy is to treat the matching distances of face and iris classifiers as a two-dimensional feature vector and to use a classifier such as Fisher's discriminant analysis and a neural network with radial basis function (RBFNN) to classify the vector as being genuine or an impostor. We compare the results of the combined classifier with the results of the individual face and iris classifiers.
342 citations
04 Jun 2009
TL;DR: The goal of the Multiple Biometrics Grand Challenge (MBGC) is to improve the performance of face and iris recognition technology from biometric samples acquired under unconstrained conditions.
Abstract: The goal of the Multiple Biometrics Grand Challenge (MBGC) is to improve the performance of face and iris recognition technology from biometric samples acquired under unconstrained conditions. The MBGC is organized into three challenge problems. Each challenge problem relaxes the acquisition constraints in different directions. In the Portal Challenge Problem, the goal is to recognize people from near-infrared (NIR) and high definition (HD) video as they walk through a portal. Iris recognition can be performed from the NIR video and face recognition from the HD video. The availability of NIR and HD modalities allows for the development of fusion algorithms. The Still Face Challenge Problem has two primary goals. The first is to improve recognition performance from frontal and off angle still face images taken under uncontrolled indoor and outdoor lighting. The second is to improve recognition performance on still frontal face images that have been resized and compressed, as is required for electronic passports. In the Video Challenge Problem, the goal is to recognize people from video in unconstrained environments. The video is unconstrained in pose, illumination, and camera angle. All three challenge problems include a large data set, experiment descriptions, ground truth, and scoring code.
199 citations