scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia (35°S, 138°E)

TL;DR: In this article, the directionality of quasi-monochromatic (QM) waves in the mesopause region is found to be highly anisotropic, especially during the solstices.
About: This article is published in Journal of Atmospheric and Solar-Terrestrial Physics.The article was published on 1999-04-01. It has received 176 citations till now. The article focuses on the topics: Mesopause & Mesosphere.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape are discussed.
Abstract: [1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

2,206 citations

Journal ArticleDOI
TL;DR: The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave dynamics and effects from orographic and other sources to regions of dissipation at high altitudes as discussed by the authors.
Abstract: The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropson...

158 citations


Cites background from "Analysis and interpretation of airg..."

  • ...…propagation, and potential for instability and mean flow interactions (e.g., Gavrilov and Shved 1982; Taylor et al. 1995; Taylor and Hapgood 1988; Hecht et al. 1997, 2001; Walterscheid et al. 1999; Nakamura et al. 2003; Smith et al. 2009; Pautet et al. 2014; Hecht et al. 2014; Fritts et al. 2014)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors review measurements of nighttime atmospheric/ionospheric waves in the upper atmosphere in Japan, Indonesia, and Australia, using all-sky airglow imagers of optical mesosphere thermosphere imagers (OMTIs).
Abstract: We review measurements of nighttime atmospheric/ionospheric waves in the upper atmosphere in Japan, Indonesia, and Australia, using all-sky airglow imagers of optical mesosphere thermosphere imagers (OMTIs). The imagers observe two-dimensional patterns of airglow emissions from oxygen (wavelength: 557.7 nm) and hydroxyl (OH) (near-infrared band) in the mesopause region (80–100 km) and from oxygen (630.0 nm) in the thermosphere/ionosphere (200–300 km). Several statistical studies were done to investigate propagation characteristics of small-scale (less than 100 km) gravity waves in the mesopause region and medium-scale traveling ionospheric disturbances (MSTIDs, ∼100–1,000 km) in the thermosphere/ionosphere. Clear seasonal variations of occurrence and propagation directions were reported for these waves. The propagation directions in the mesopause region are controlled by wind filtering, ducting processes and relative location to the wave sources in the troposphere. Poleward-propagating waves tend to be observed in the summer in the mesopause region at several stations, suggesting that mesospheric gravity waves are generated by intense convective activity in the equatorial troposphere. On the other hand, systematic equatorward and westward motions were observed for all seasons for nighttime MSTIDs in the midlatitude ionosphere with geomagnetic conjugacy between the northern and southern hemispheres. Ionospheric instabilities may play important role for the generation and propagation of these MSTIDs. We also give an example of simultaneous observation of quasi-periodic southward-moving waves in the mesopause region and in the thermosphere at the geographic equator. From these results, we discuss mean wind acceleration by mesospheric gravity waves and penetration of gravity waves from the mesosphere to the thermosphere.

130 citations


Cites background or result from "Analysis and interpretation of airg..."

  • ...Walterscheid et al. (1999) reported 10-month observations of OH and O2 airglow images at Adelaide, Australia (24◦S, 138◦E)....

    [...]

  • ...As discussed by Walterscheid et al. (1999) and Suzuki et al. (2004), the poleward- (southward-) moving waves over the Australian continent in summer are likely to be generated by strong convective activities in the equatorial latitudes, propagating in the mesospheric thermal duct over long distance....

    [...]

  • ...On the other hand, if the poleward-moving waves observed at Darwin and Adelaide in summer are ducted, as suggested by Walterscheid et al. (1999) and Suzuki et al. (2004), they would not carry momentum flux to the mesopause region....

    [...]

  • ...Similar zonal tendency (eastward in summer and westward in winter) was also weakly seen in statistical results by Walterscheid et al. (1999) at Adelaide, although the preference was mainly in the meridional direction....

    [...]

  • ...Walterscheid et al. (1999) showed that during the Australian summer, small-scale waves in the airglow images were predominantly poleward-propagating, while during the Australian winter they were predominantly equatorward....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a traveling front in the OH Meinel (OHM) and O2atmospheric (O2A) airglow emissions over Alice Springs, Australia, was observed.
Abstract: [1] The Aerospace Corporation's Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (∼25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a strong phase-locked 2 day wave (PL/TDW). We have analyzed the wave trapping conditions for the upper mesosphere and lower thermosphere using a combination of data and empirical models and found that the airglow layers were located in a region of ducting. The PL/TDW-disturbed wind profile was effective in supporting a high degree of ducting, whereas without the PL/TDW the ducting was minimal or nonexistent. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. In OHM the leading disturbance was an isolated disturbance resembling a solitary wave. The characteristics of the wave train suggest an undular bore with some turbulent dissipation at the leading edge.

125 citations

01 Jan 2012
TL;DR: In this article, a traveling front in the OH Meinel (OHM) and O2atmospheric (O2A) airglow emissions over Alice Springs, Australia, was observed.
Abstract: [1] The Aerospace Corporation's Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (∼25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a strong phase-locked 2 day wave (PL/TDW). We have analyzed the wave trapping conditions for the upper mesosphere and lower thermosphere using a combination of data and empirical models and found that the airglow layers were located in a region of ducting. The PL/TDW-disturbed wind profile was effective in supporting a high degree of ducting, whereas without the PL/TDW the ducting was minimal or nonexistent. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. In OHM the leading disturbance was an isolated disturbance resembling a solitary wave. The characteristics of the wave train suggest an undular bore with some turbulent dissipation at the leading edge.

123 citations


Cites background from "Analysis and interpretation of airg..."

  • ...[19] Bores (or more generally long-lived horizontally propagating wave trains) require ducting to maintain the traveling disturbance [Walterscheid and Hickey, 2009; Walterscheid et al., 1999; Crook, 1986; Rottman and Grimshaw, 2002]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the MSIS-86 empirical model has been extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions.
Abstract: The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause.

2,359 citations

Journal ArticleDOI
TL;DR: In this article, the HWM90 thermospheric wind model has been revised in the lower thermosphere and extended into the mesosphere, stratosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions.

676 citations

Journal ArticleDOI
TL;DR: A climatology of gravity wave activity in the lower atmosphere based on high-resolution radiosonde measurements provided by the Australian Bureau of Meteorology is presented in this article, where the vertical wavenumber power spectra of normalized temperature fluctuations are calculated within both the troposphere and the lower stratosphere and compared with the predictions of current gravity wave saturation theories.
Abstract: A climatology of gravity wave activity in the lower atmosphere based on high-resolution radiosonde measurements provided by the Australian Bureau of Meteorology is presented. These data are ideal for investigating gravity wave activity and its variation with position and time. Observations from 18 meteorological stations within Australia and Antarctica, covering a latitude range of 12°S – 68°S and a longitude range of 78°E–159°E, are discussed. Vertical wavenumber power spectra of normalized temperature fluctuations are calculated within both the troposphere and the lower stratosphere and are compared with the predictions of current gravity wave saturation theories. Estimates of important model parameters such as the total gravity wave energy per unit mass are also presented. The vertical wavenumber power spectra are found to remain approximately invariant with time and geographic location with only one significant exception. Spectral amplitudes observed within the lower stratosphere are found to be consistent with theoretical expectations but the amplitudes observed within the troposphere are consistently larger than expected, often by as much as a factor of about 3. Seasonal variations of stratospheric wave energy per unit mass are identified with maxima occurring during the low-latitude wet season and during the midlatitude winter. These variations do not exceed a factor of about 2. Similar variations are not found in the troposphere where temperature fluctuations are likely to be contaminated by convection and inversions. The largest values of wave energy density are typically found near the tropopause.

346 citations

Journal ArticleDOI
TL;DR: In this paper, a linear model of gravity wave propagation is applied to investigate the underlying causes of some of the observed patterns, and the model shows that this coupling can give rise to geographical, seasonal, and vertical variations in gravity wave observations without any variations in the spectrum or amplitude of the sources in the troposphere.
Abstract: Observational analyses of gravity waves in the stratosphere have revealed various climatological patterns in gravity wave activity. Seasonal, geographical, and vertical variations have all been observed. In this work, a linear model of gravity wave propagation is applied to investigate the underlying causes of some of the observed patterns. A collection of monochromatic gravity waves that represent a broad spectrum of wavenumbers and frequencies is input at 6-km altitude in the model. Propagation of the waves through realistic background atmospheric wind and stability fields is treated with linear ray theory and a simple saturation condition to limit amplitudes to stable values. The wave spectrum at the 6-km source height is specified to be constant at all latitudes, longitudes, and times, so the variability that appears at higher altitudes is due entirely to background atmosphere variations. Before the model results are compared to the observations, the spectrum of waves is filtered in a way that mimics the limitations of each of the observation techniques. The filtering is described in terms of vertical wavelength and is referred to as the “observational filter.” In a vertically varying background wind, gravity waves are Doppler-shifted in intrinsic frequency and refracted to different vertical wavelengths as they propagate vertically through the atmosphere. The observational filter and the wave refraction effects can thus couple in interesting ways that have not been explicitly considered in previous work. The model shows that this coupling can give rise to geographical, seasonal, and vertical variations in gravity wave observations without any variations in the spectrum or amplitude of gravity wave sources in the troposphere. Thus careful consideration of both the background wind profile and observational filter can greatly affect the interpretation of the observed climatological patterns in gravity wave activity.

276 citations

Journal ArticleDOI
TL;DR: In this paper, a statistical study of gravity wave motions in the mesosphere and lower thermosphere measured with a MF partial reflection radar located at Buckland Park new Adelaide (35°S, 138°E) in the period November 1933 to December 1984 is presented.
Abstract: A statistical study of gravity wave motions in the mesosphere and lower thermosphere measured with a MF partial reflection radar located at Buckland Park new Adelaide (35°S, 138°E) in the period November 1933 to December 1984 is presented. The analyses am confined to waves with ground based periods between 1 and 24 h. Time-height cross sections show that the mean square amplitudes u′2 and v′2, of the zonal and meridional perturbation velocities, respectively, vary in a predominantly semiannual manner such that the minima in wave activity coincide with the reversals in the zonal circulation in the middle atmosphere. In most instances, v′2 is greater than u′2 which, together with the small but nonzero u′v′ fluxes shows that the gravity wave field is partially polarized. A technique similar to that used to analyse partially polarized electromagnetic waves suggests that on a seasonal basis, the wave field is polarized by about 10% to 20% but for shorter periods the degree of polarization may be signi...

224 citations