scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Analysis, modeling, design and implementation of average current mode control for interleaved boost converter

22 Apr 2013-pp 280-285
TL;DR: Small signal modeling approach is used to develop an analytical model for average current-mode controlled interleaved boost converter and the experimental results are presented to evaluate the derived model and performance of designed controller.
Abstract: In high power applications, parallel operation of boost converters is recommended. These paralleled boost converters can be operated in interleaved mode. Interleaved mode of operation improves the steady state and dynamic performance of the system. In this work, small signal modeling approach is used to develop an analytical model for average current-mode controlled interleaved boost converter. The controller is designed and implemented for a 500 W interleaved boost converter prototype. The experimental results are presented to evaluate the derived model and performance of designed controller.
References
More filters
Book
31 Jul 1997
TL;DR: Converters in Equilibrium, Steady-State Equivalent Circuit Modeling, Losses, and Efficiency, and Power and Harmonics in Nonsinusoidal Systems.
Abstract: Preface. 1. Introduction. I: Converters in Equilibrium. 2. Principles of Steady State Converter Analysis. 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency. 4. Switch Realization. 5. The Discontinuous Conduction Mode. 6. Converter Circuits. II: Converter Dynamics and Control. 7. AC Equivalent Circuit Modeling. 8. Converter Transfer Functions. 9. Controller Design. 10. Input Filter Design. 11. AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode. 12. Current Programmed Control. III: Magnetics. 13. Basic Magnetics Theory. 14. Inductor Design. 15. Transformer Design. IV: Modern Rectifiers and Power System Harmonics. 16. Power and Harmonics in Nonsinusoidal Systems. 17. Line-Commutated Rectifiers. 18. Pulse-Width Modulated Rectifiers. V: Resonant Converters. 19. Resonant Conversion. 20. Soft Switching. Appendices: A. RMS Values of Commonly-Observed Converter Waveforms. B. Simulation of Converters. C. Middlebrook's Extra Element Theorem. D. Magnetics Design Tables. Index.

6,136 citations

01 Jan 1990
TL;DR: Average current mode control may be used effectively to control currents other than inductor current, allowing a much broader range of topological application.
Abstract: Current mode control as usually implemented in switching power supplies actually senses and controls peak inductor current. This gives rise to many serious problems, including poor noise immunity, a need for slope compensation, and peak-to-average current errors which the inherently low current loop gain cannot correct. Average current mode control eliminates these problems and may be used effectively to control currents other than inductor current, allowing a much broader range of topological application.

611 citations


"Analysis, modeling, design and impl..." refers background in this paper

  • ...Steady state gain and noise immunity are high in ACC [8]....

    [...]

  • ...ACC is free from instability problems unlike peak current mode control which requires slope compensation to make it stable at duty ratio D > 0.5....

    [...]

  • ...The control structure for ACC of interleaved boost converter shown in Fig.1 consists of two current loop controllers (HiL1(s), HiL2(s)) and one voltage loop controller (Hv(s))....

    [...]

  • ...Average current-mode control (ACC) is well established and it has advantages of achieving higher bandwidths when compared to voltage mode control [7]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a small-signal model for the average current-mode control method is developed, which is suitable for applications where the average inductor current needs to be controlled, as in power factor correction circuits and battery charger dischargers.
Abstract: A recently proposed average current-mode control method is analyzed. A complete small-signal model for the control scheme is developed. The model is accurate up to half the switching frequency. This control scheme is suitable for applications where the average inductor current needs to be controlled, as in power factor correction circuits and battery charger dischargers. The subharmonic oscillation, commonly found in peak current-mode control, also exists in this method. This subharmonic oscillation can be eliminated by properly choosing the proper gain of the compensation network in the current loop. Model predictions are confirmed experimentally. >

347 citations


"Analysis, modeling, design and impl..." refers methods in this paper

  • ...State space averaging method is used to obtain small signal model of the converter [9]-[11]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a multidevice structure with interleaved control is proposed to reduce the input current ripples, the output voltage ripples and the size of passive components with high efficiency compared with the other topologies.
Abstract: Multiphase converter topologies for use in high-performance applications have received increasing interest in recent years. This paper proposes a novel multidevice interleaved boost converter (MDIBC) that interfaces the fuel cell with the powertrain of hybrid electric vehicles. In this research, a multidevice structure with interleaved control is proposed to reduce the input current ripples, the output voltage ripples, and the size of passive components with high efficiency compared with the other topologies. In addition, low EMI and low stress in the switches are expected. The proposed dc/dc converter is compared to other converter topologies such as conventional boost converter (BC), multidevice boost converter (MDBC), and two-phase interleaved boost converter (IBC) to verify its dynamic performance. Furthermore, a generalized small-signal model is derived for these dc/dc converters, which has not been previously discussed. A digital dual-loop control is designed to achieve the proper regulator for the converters with fast transient response. The dc/dc converter topologies and their controller are designed and investigated by using MATLAB/Simulink. Finally, the proposed converter (MDIBC) is experimentally validated with results obtained from a 30-kW prototype that has been built and tested in our laboratory based on TMS320F2808 DSP. The simulation and experimental results have demonstrated that the proposed converter is more efficient than other dc/dc converter topologies in achieving high performance and reliability for high-power dc/dc converters.

322 citations


"Analysis, modeling, design and impl..." refers background in this paper

  • ...These paralleled converters can be operated in interleaved mode [3]&[4], where interleaving is process of operating boost converters in parallel, with a phase shift between their gate drive signals....

    [...]

Proceedings ArticleDOI
14 Mar 1999
TL;DR: In this article, a straight-forward averaged modeling method is proposed, and the resulting models are shown to be accurate enough for practical design purpose for PWM converters with average current control.
Abstract: This paper addresses modeling and practical design issues for PWM converters with average current control. A straight-forward averaged modeling method is proposed, and the resulting models are shown to be accurate enough for practical design purpose. Limitations of previously published models that incorporate sampling effect are discussed. The proposed averaged model is then applied for stability analysis and control design. In particular, conditions under which switching instability may occur are identified, and design method that avoids the instability problem is presented. The proposed modeling and design methods are demonstrated and further validated by a prototype synchronous-switch buck converter with 5 V input and 2 V output.

135 citations