scispace - formally typeset
Journal ArticleDOI

Analysis of dystrophin gene deletions by multiplex PCR in eastern India.

01 Jul 2006-Neurology India (Medknow Publications)-Vol. 54, Iss: 3, pp 310-311

...read more

Content maybe subject to copyright    Report


Citations
More filters
Journal Article

[...]

TL;DR: The systematic approach/algorithm used in this study offers the best possible economical mutation analysis in the Indian scenario.
Abstract: Background & objectives: Duchenne (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive disorders, caused by mutations in the dystrophin gene. Genetic diagnosis of the proband becomes crucial, and forms the base for carrier analysis, genetic counselling, prediction of natural history and prognosis, and eligibility for therapeutic strategies. Traditional multiplex PCR assay is the common method used in India to detect DMD gene deletions, mainly in the hot-spot region. Deletions of exons outside the usual 18 or 21 exons in the hot-spot, duplications and carrier analysis are often left without precise genetic diagnosis and require efficient dosage/quantitative analysis. In this study we evaluated the efficacy of using multiplex PCR (mPCR) of 30 exons followed by multiplex ligation-dependent probe amplification (MLPA), to study deletions and duplications in the DMD gene in patients clinically diagnosed as BMD/ DMD. Methods: Using an algorithm of mPCR and MLPA which was less invasive and cost-effective, we performed retrospective and prospective analysis on 150 male patients. Results: Multiplex PCR could pick up deletions in 103 of the 150 cases. MLPA was able to detect deletions and duplications including nine additional mutations. Further, the borders of the deletions and duplications were more accurately defined by this recent methodology, which enables one to determine the effect of the mutation on the reading frame. In all, including the single exon deletions, MLPA was efficient in accurately confirming mutations in 35 per cent of all cases. Ten novel mutations were identified in this study. Overall, this approach confirmed mutations in 75 per cent of the patients in our study. Interpretations & conclusions: The systematic approach/algorithm used in this study offers the best possible economical mutation analysis in the Indian scenario.

33 citations

Journal ArticleDOI

[...]

TL;DR: In this study population in south India the deletion rate was 73% and were more frequent in the distal end exon and with the availability of genetic analysis, the first investigation of choice in DMD should be genetic studies and muscle biopsy should be considered only if the genetic tests are negative or not available.
Abstract: Background : Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy that affects young boys and the dystrophin gene on the X chromosome has been found to be associated with the disorder. Materials and Methods : In this prospective study, 112 clinically diagnosed DMD patients had muscle biopsy and were tested for exon deletions. Genotyping was also carried out at STR44, STR45, STR49 and STR 50 markers in 15 families. Results : Of the 112 clinically suspected DMD patients, the diagnosis of DMD was confirmed by histopathology and/or genetics in 101 patients. The mean age of onset was 3.1±1.44 years (1-6 years) and the mean age at presentation was 8.0±3.1 years (1.1-18.0 years). Delayed motor milestones were present in 63 (62.3%) patients. The mean creatine kinase value was 11822.64±8206.90 U/L (1240-57,700). Eighty-four patients had muscle biopsy and immunohistochemistry was done in 60 muscle samples, all of which demonstrated absence of dystrophin staining. Of the 60 dystrophin-negative cases, 73% showed deletion of at least one exon. Single exon deletion was found in 20.4%. Distal hotspot Exons 45, 47, 49 and 50 were the commonly deleted xenons and the deletion rates were 36%, 35%, 33.7% and 38.5% respectively. Conclusions : In this study population in south India the deletion rate was 73% and were more frequent in the distal end exon. With the availability of genetic analysis, the first investigation of choice in DMD should be genetic studies and muscle biopsy should be considered only if the genetic tests are negative or not available.

27 citations


Cites background from "Analysis of dystrophin gene deletio..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: This significant gene deletion analysis has been carried out for Becker muscular dystrophy patients particularly from Western India using 32 exons.
Abstract: Background: Becker muscular dystrophy (BMD) is caused by mutations in the dystrophin gene with variable phenotypes. Becker muscular dystrophy patients have low levels of nearly full-length dystrophin and carry in-frame mutations, which allow partial functioning of the protein. Aim: To study the deletion patterns of BMD and to correlate the same with reading frame rule and different phenotypes. Setting: A tertiary care teaching hospital. Design: This is a prospective hospital-based study. Materials and Methods: Thirty-two exons spanning different hot spot regions using Multiplex PCR techniques were studied in 347 patients. Two hundred and twenty-two showed deletions in one or more of the 32 exons. Out of these, 46 diagnosed as BMD patients were analyzed. Results: Forty-six BMD patients showed deletions in both regions of the dystrophin gene. Out of these 89.1% (41/46) were in-frame deletions. Deletions starting with Exon 45 were found in 76.1% (35/46) of the cases. Mutations in the majority of cases i.e. 39/46 (84.8%) were seen in 3' downstream region (Exon 45-55, distal rod domain). Few, i.e. 5/46 (10.8%) showed deletions in 5' upstream region (Exons 3-20, N-terminus and proximal rod domain) of the gene, while in 2/46 (4.4%) large mutations (>40 bp) spanning both regions (Exons 3-55) were detected. Conclusion: This significant gene deletion analysis has been carried out for BMD patients particularly from Western India using 32 exons.

21 citations


Cites result from "Analysis of dystrophin gene deletio..."

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: A 9-year-old boy suffering from DMD was treated with serial autologous bone marrow mononuclear cell transplantations followed by multidisciplinary rehabilitation and electromyography findings showed development of new normal motor unit potentials of the vastus medialis muscle.
Abstract: Patient: Male, 9 Final Diagnosis: Duchenne muscular dystrophy Symptoms: Hyporeflexia • hypotonia • weaknes of lower limbs Medication: — Clinical Procedure: — Specialty: Neurology Objective: Congenital defects/diseases

19 citations


Cites background from "Analysis of dystrophin gene deletio..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: A mouse model of the disease recapitulating a novel human mutation, a large de novo deletion of exons 8-34 of the DMD gene, found in a Russian DMD patient, is created, useful for validating therapies based on skipping exons that encode the N-terminal actin-binding domain.
Abstract: Exon skipping is a promising strategy for Duchenne muscular dystrophy (DMD) disease-modifying therapy. To make this approach safe, ensuring that excluding one or more exons will restore the reading frame and that the resulting protein will retain critical functions of the full-length dystrophin protein is necessary. However, in vivo testing of the consequences of skipping exons that encode the N-terminal actin-binding domain (ABD) has been confounded by the absence of a relevant animal model. We created a mouse model of the disease recapitulating a novel human mutation, a large de novo deletion of exons 8-34 of the DMD gene, found in a Russian DMD patient. This mutation was achieved by deleting exons 8-34 of the X-linked mouse Dmd gene using CRISPR/Cas9 genome editing, which led to a reading frame shift and the absence of functional dystrophin production. Male mice carrying this deletion display several important signs of muscular dystrophy, including a gradual age-dependent decrease in muscle strength, increased creatine kinase, muscle fibrosis and central nucleation. The degrees of these changes are comparable to those observed in mdx mice, a standard laboratory model of DMD. This new model of DMD will be useful for validating therapies based on skipping exons that encode the N-terminal ABD and for improving our understanding of the role of the N-terminal domain and central rod domain in the biological function of dystrophin. Simultaneous skipping of exons 6 and 7 should restore the gene reading frame and lead to the production of a protein that might retain functionality despite the partial deletion of the ABD.

18 citations


Cites background from "Analysis of dystrophin gene deletio..."

  • [...]

  • [...]

  • [...]


References
More filters
Journal ArticleDOI

[...]

TL;DR: A rapid, safe and inexpensive method was developed to simplify the deprotein-ization procedure that yielded quantities comparable to those obtained from phenol-chloroform extractions, rendering the entire process of RFLP analysis free of toxic materials.
Abstract: One of the obstacles encountered when extracting DNA from a large number of samples is the cumbersome method of deprotein-izing cell digests with the hazardous organic solvents phenol and isochloroform. Several other non-toxic extraction procedures have been published, but require either extensive dialysis (1) or the use of filters (2). A rapid, safe and inexpensive method was developed to simplify the deprotein-ization procedure. This method involves salting out of the cellular proteins by dehydration and precipitation with a saturated NaCl solution. Buffy coats of nucleated cells obtained from anticoagulated blood (ACD or EDTA) were resuspended in 15 ml polypropylene centrifugation tubes with 3 ml of nuclei lysis buffer (10 mM Tris-HCl t 400 mM NaCl and 2 mM Na 2 EDTA, pH 8.2). The cell lysates were digested overnight at 37°C with 0.2 ml of 10Z SDS and 0.5 ml of a protease K solution (1 mg protease K in 1Z SDS and 2 mM Na2EDTA). After digestion was complete, 1 ml of saturated NaCl (approximately 6M) was added to each tube and shaken vigorously for 15 seconds, followed by centrifugation at 2500 rpm for 15 minutes. The precipitated protein pellet was left at the bottom of the tube and the supernatant containing the DNA was transferred to another 15 ml polypropylene tube. Exactly 2 volumes of room temperature absolute ethanol was added and the tubes inverted several times until the DNA precipitated. The precipitated DNA strands were removed with a plastic spatula or pipette and transferred to a 1.5 ml microcentrifuge tube containing 100-200 pi TE buffer (10 mM Tris-HCl, 0.2 mM Na 2 EDTA, pH 7.5). The DNA was allowed to dissolve 2 hours at 37°C before quantitating. The DNA obtained from this simple technique yielded quantities comparable to those obtained from phenol-chloroform extractions. The 260/280 ratios were consistently 1.8-2.0, demonstrating good deproteinization. Restrictions were performed using a number of different enzymes requiring high, medium or low salt concentrations, all resulting in complete restriction. This procedure has been used in our laboratory on several thousand blood samples for parentage, population and forensic studies. This technique is used with our non-isotopic hybridization procedures (3) rendering the entire process of RFLP analysis free of toxic materials.

19,242 citations


"Analysis of dystrophin gene deletio..." refers methods in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: This procedure utilizes simultaneous genomic DNA amplification of multiple widely separated sequences and should permit deletion scanning at any hemizygous locus and it is demonstrated the application of this multiplex reaction for prenatal and postnatal diagnosis of DMD.
Abstract: The application of recombinant DNA technology to prenatal diagnosis of many recessively inherited X-linked diseases is complicated by a high frequency of heterogeneous, new mutations (1). Partial gene deletions account for more than 50% of Duchenne muscular dystrophy (DMD) lesions, and approximately one-third of all cases result from a new mutation (2-5). We report the isolation and DNA sequence of several deletion prone exons from the human DMD gene. We also describe a rapid method capable of detecting the majority of deletions in the DMD gene. This procedure utilizes simultaneous genomic DNA amplification of multiple widely separated sequences and should permit deletion scanning at any hemizygous locus. We demonstrate the application of this multiplex reaction for prenatal and postnatal diagnosis of DMD.

1,293 citations


"Analysis of dystrophin gene deletio..." refers methods in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: Using oligonucleotide primer sequences that can be used to amplify eight exons plus the muscle promoter of the dystrophin gene in a single multiplex polymerase chain reaction (PCR) will allow deletion detection and prenatal diagnosis for most DMD/BMD patients in a fraction of the time required for Southern blot analysis.
Abstract: We describe oligonucleotide primer sequences that can be used to amplify eight exons plus the muscle promoter of the dystrophin gene in a single multiplex polymerase chain reaction (PCR). When used in conjunction with an existing primer set, these two multiplex reactions detect about 98% of deletions in patients with Duchenne or Becker muscular dystrophy (DMD, BMD). Furthermore, these primers amplify most of the exons in the deletion prone “hot spot” region around exons 44 to 53, allowing determination of deletion endpoints and prediction of mutational effects on the translational reading frame. Thus, use of these PCR-based assays will allow deletion detection and prenatal diagnosis for most DMD/BMD patients in a fraction of the time required for Southern blot analysis.

633 citations


"Analysis of dystrophin gene deletio..." refers methods in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: DNA samples from 121 unrelated DMD/BMD patients from North India were analyzed for deletional studies with multiplex PCR and Southern hybridization, and a total of 88 patients showed intragenic deletions in the dystrophin gene.
Abstract: Population-based variations in frequency and distribution of dystrophin gene deletions have been recognized in Duchenne/Becker (DMD/BMD) muscular dystrophy patients. In the present study, DNA samples from 121 unrelated DMD/BMD patients from North India were analyzed for deletional studies with multiplex PCR and Southern hybridization. A total of 88 (73%) patients showed intragenic deletions in the dystrophin gene. The observed proportion of gene deletions is relatively high, particularly compared with that of Asian counterparts. However, the distribution of breakpoints across the gene does not show significant variations.

40 citations


"Analysis of dystrophin gene deletio..." refers background in this paper

  • [...]

  • [...]

  • [...]

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In the West Midlands region of Britain, Duchenne muscular dystrophy (DMD) is twice as common as expected in Indians, and is less common than expected in Pakistanis.
Abstract: In the West Midlands region of Britain, Duchenne muscular dystrophy (DMD) is twice as common as expected in Indians, and is less common than expected in Pakistanis. Although the numbers are small, they cannot be explained by any bias of ascertainment and are considered to be real. One possible mechanism for the high frequency of DMD in Indians is the presence of repetitive elements in the wild type gene which predispose to mutations.

19 citations


"Analysis of dystrophin gene deletio..." refers background in this paper

  • [...]