scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Analysis of Fractional Differential Equations

TL;DR: In this paper, the authors discuss existence, uniqueness, and structural stability of solutions of nonlinear differential equations of fractional order, and investigate the dependence of the solution on the order of the differential equation and on the initial condition.
About: This article is published in Journal of Mathematical Analysis and Applications.The article was published on 2002-01-15 and is currently open access. It has received 3047 citations till now. The article focuses on the topics: Stochastic partial differential equation & Numerical partial differential equations.
Citations
More filters
01 Jan 2015
TL;DR: In this article, the authors present a new definition of fractional derivative with a smooth kernel, which takes on two different representations for the temporal and spatial variable, for which it is more convenient to work with the Fourier transform.
Abstract: In the paper, we present a new definition of fractional deriva tive with a smooth kernel which takes on two different representations for the temporal and spatial variable. The first works on the time variables; thus it is suitable to use th e Laplace transform. The second definition is related to the spatial va riables, by a non-local fractional derivative, for which it is more convenient to work with the Fourier transform. The interest for this new approach with a regular kernel was born from the prospect that there is a class of non-local systems, which have the ability to descri be the material heterogeneities and the fluctuations of diff erent scales, which cannot be well described by classical local theories or by fractional models with singular kernel.

1,972 citations

Book
07 Aug 2013
TL;DR: In this paper, an Adams-type predictor-corrector method for the numerical solution of fractional differential equations is discussed, which may be used both for linear and nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator) too.
Abstract: We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.

1,617 citations


Cites background or methods from "Analysis of Fractional Differential..."

  • ...We refer to [11] for a more thorough mathematical analysis of the initial value problem defined by eqs....

    [...]

  • ...It then turns out that, under some very weak conditions on the function f on the right-hand side of the differential equation, we indeed can say that a solution exists and that this solution is uniquely determined [11]....

    [...]

  • ...We may [11] specify the initial values y(0), y'(0),....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the basic theory for the initial value problem of fractional differential equations involving Riemann-Liouville differential operators is discussed employing the classical approach, and the theory of inequalities, local existence, extremal solutions, comparison result and global existence of solutions are considered.
Abstract: In this paper, the basic theory for the initial value problem of fractional differential equations involving Riemann–Liouville differential operators is discussed employing the classical approach. The theory of inequalities, local existence, extremal solutions, comparison result and global existence of solutions are considered.

1,035 citations

Journal ArticleDOI
TL;DR: A new lemma for the Caputo fractional derivatives, when 0 α 1 , is proposed, which has proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the stability of many fractional order systems, which can be nonlinear and time varying.

1,010 citations

Journal ArticleDOI
TL;DR: The numerical method can be seen as a generalization of the classical one-step Adams–Bashforth–Moulton scheme for first-order equations and a detailed error analysis is given.
Abstract: We investigate a method for the numerical solution of the nonlinear fractional differential equation D * α y(t)=f(t,y(t)), equipped with initial conditions y (k)(0)=y 0 (k), k=0,1,...,⌈α⌉−1. Here α may be an arbitrary positive real number, and the differential operator is the Caputo derivative. The numerical method can be seen as a generalization of the classical one-step Adams–Bashforth–Moulton scheme for first-order equations. We give a detailed error analysis for this algorithm. This includes, in particular, error bounds under various types of assumptions on the equation. Asymptotic expansions for the error are also mentioned briefly. The latter may be used in connection with Richardson's extrapolation principle to obtain modified versions of the algorithm that exhibit faster convergence behaviour.

787 citations

References
More filters
Book
01 Jan 1999

15,898 citations

Book
08 Dec 1993
TL;DR: Fractional integrals and derivatives on an interval fractional integral integrals on the real axis and half-axis further properties of fractional integral and derivatives, and derivatives of functions of many variables applications to integral equations of the first kind with power and power-logarithmic kernels integral equations with special function kernels applications to differential equations as discussed by the authors.
Abstract: Fractional integrals and derivatives on an interval fractional integrals and derivatives on the real axis and half-axis further properties of fractional integrals and derivatives other forms of fractional integrals and derivatives fractional integrodifferentiation of functions of many variables applications to integral equations of the first kind with power and power-logarithmic kernels integral equations fo the first kind with special function kernels applications to differential equations.

7,096 citations

Book
01 Jan 1964
TL;DR: The real and complex number system as discussed by the authors is a real number system where the real number is defined by a real function and the complex number is represented by a complex field of functions.
Abstract: Chapter 1: The Real and Complex Number Systems Introduction Ordered Sets Fields The Real Field The Extended Real Number System The Complex Field Euclidean Spaces Appendix Exercises Chapter 2: Basic Topology Finite, Countable, and Uncountable Sets Metric Spaces Compact Sets Perfect Sets Connected Sets Exercises Chapter 3: Numerical Sequences and Series Convergent Sequences Subsequences Cauchy Sequences Upper and Lower Limits Some Special Sequences Series Series of Nonnegative Terms The Number e The Root and Ratio Tests Power Series Summation by Parts Absolute Convergence Addition and Multiplication of Series Rearrangements Exercises Chapter 4: Continuity Limits of Functions Continuous Functions Continuity and Compactness Continuity and Connectedness Discontinuities Monotonic Functions Infinite Limits and Limits at Infinity Exercises Chapter 5: Differentiation The Derivative of a Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Derivatives of Higher-Order Taylor's Theorem Differentiation of Vector-valued Functions Exercises Chapter 6: The Riemann-Stieltjes Integral Definition and Existence of the Integral Properties of the Integral Integration and Differentiation Integration of Vector-valued Functions Rectifiable Curves Exercises Chapter 7: Sequences and Series of Functions Discussion of Main Problem Uniform Convergence Uniform Convergence and Continuity Uniform Convergence and Integration Uniform Convergence and Differentiation Equicontinuous Families of Functions The Stone-Weierstrass Theorem Exercises Chapter 8: Some Special Functions Power Series The Exponential and Logarithmic Functions The Trigonometric Functions The Algebraic Completeness of the Complex Field Fourier Series The Gamma Function Exercises Chapter 9: Functions of Several Variables Linear Transformations Differentiation The Contraction Principle The Inverse Function Theorem The Implicit Function Theorem The Rank Theorem Determinants Derivatives of Higher Order Differentiation of Integrals Exercises Chapter 10: Integration of Differential Forms Integration Primitive Mappings Partitions of Unity Change of Variables Differential Forms Simplexes and Chains Stokes' Theorem Closed Forms and Exact Forms Vector Analysis Exercises Chapter 11: The Lebesgue Theory Set Functions Construction of the Lebesgue Measure Measure Spaces Measurable Functions Simple Functions Integration Comparison with the Riemann Integral Integration of Complex Functions Functions of Class L2 Exercises Bibliography List of Special Symbols Index

6,681 citations

01 Jan 1953

3,566 citations

Journal ArticleDOI
TL;DR: In this paper, a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges has been investigated by introducing fractional derivatives in the stressstrain relation, and a rigorous proof of the formulae to be used in obtaining the analytic expression of Q is given.
Abstract: Summary Laboratory experiments and field observations indicate that the Q of many non-ferromagnetic inorganic solids is almost frequency independent in the range 10-2-107 cis, although no single substance has been investigated over the entire frequency spectrum. One of the purposes of this investigation is to find the analytic expression for a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges. This will be obtained by introducing fractional derivatives in the stressstrain relation. Since the aim of this research is also to contribute to elucidating the dissipating mechanism in the Earth free modes, we shall treat the dissipation in the free, purely torsional, modes of a shell. The dissipation in a plane wave will also be treated. The theory is checked with the new values determined for the Q of spheroidal free modes of the Earth in the range between 10 and 5 min integrated with the Q of Rayleigh waves in the range between 5 and 0.6 min. Another check of the theory is made with the experimental values of the Q of the longitudinal waves in an aluminium rod in the range between lo-’ and 10-3s. In both checks the theory represents the observed phenomena very satisfactorily. The time derivative which enters the stress-strain relation in both cases is of order 0.15. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. In a homogeneous isotropic elastic field the elastic properties of the substance are specified by a description of the strains and stresses in a limited portion of the field since the strains and stresses are linearly related by two parameters which describe the elastic properties of the field. If the elastic field is not homogeneous nor isotropic the properties of the field are specified in a similar manner by a larger number of parameters which also depend on the position.

3,372 citations