scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Analysis of the ASTM C512 Spring-Loaded CREEP Frame

01 Oct 2019-Journal of Materials in Civil Engineering (American Society of Civil Engineers (ASCE))-Vol. 31, Iss: 10, pp 04019234
TL;DR: The test method of ASTM C512 (ASTM. 2015) is described in this paper, which is the standard test method for creep of concrete in compression, and the use of a spring-loaded creep...
Abstract: The test method of ASTM C512 (ASTM. 2015. Standard test method for creep of concrete in compression. ASTM C512/C512M. West Conshohocken, PA: ASTM) dictates the use of a spring-loaded creep ...
Citations
More filters
DOI
01 Jan 2020
TL;DR: In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members.
Abstract: In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members. An experimental program consisted of nine prismatic beam specimens with dimensions of 150 × 150 × 600mm reinforced with different contents of steel fiber (0, 0.75 and 1.5% at the volume fraction). To introduce flexural creep loading to notched prismatic beam specimens, a four-point bending test setup was used. The sustained load with 40% of the flexural strength was applied by means of a lever system and controlled by a load cell for 90 days. During sustained loading, crack mouth opening displacement (CMOD) was monitored. Conventional flexural test after creep tests were carried out to evaluate the residual capacity of each specimen. Test results showed that steel fiber content has a significant effect on the flexural creep behavior of high-strength concrete and long-term flexural load with 40% of flexural strength doesn’t generate negative effects on the residual capacity of steel fiber reinforced high-strength concrete.

3 citations

Journal ArticleDOI
TL;DR: A component level experimental study has been carried out on four reinforced concrete (RC) walls subjected to a sustained compressive load for a period of 1 year and shrinkage tests on 10 prisms under ambient environmental conditions as discussed by the authors .
Abstract: A component level experimental study has been carried out on four reinforced concrete (RC) walls subjected to a sustained compressive load for a period of 1 year and shrinkage tests on 10 prisms under ambient environmental conditions. Two extreme longitudinal reinforcement percentages and two grades of concrete were considered and their influence on the time-dependent behavior studied. It was observed that both longitudinal percentage of steel and concrete grade have a significant influence on the time-dependent strains. The evolution of time-dependent strain in RC member was also predicted, adequately accounting for the effect of reinforcement, using a theoretical model which can employ any linear viscoelastic constitutive law for concrete and a linear elastic constitutive law for reinforcing steel. The ACI 209 and fib MC 10 recommendations for creep and shrinkage of plain concrete have been used for the prediction of long-term strains. It is demonstrated that the analysis predicts the time-dependent strains reasonably well (with a statistical mean deviation error of 1.16 and 1.00) for the creep tests on RC walls, when the compliance function proposed by ACI and fib is used. However, in the case of shrinkage tests, the accuracy with both ACI and fib models was limited (1.64 and 1.66, respectively). It is further demonstrated that by suitably recalibrating the compliance and shrinkage parameters in both ACI and fib models, the accuracy of shrinkage prediction in the companion RC specimens improves significantly with mean deviation error of 1.07 and 1.05 for ACI and fib models, respectively.
References
More filters