scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Analyzing 2D fracture problems with the improved element-free Galerkin method

TL;DR: In this paper, an improved IEFG method for two-dimensional elasticity is derived, where the orthogonal function system with a weight function is used as the basis function.
Abstract: This paper presents an improved moving least-squares (IMLS) approximation in which the orthogonal function system with a weight function is used as the basis function. The IMLS approximation has greater computational efficiency and precision than the existing moving least-squares (MLS) approximation, and does not lead to an ill-conditioned system of equations. By combining the element-free Galerkin (EFG) method and the IMLS approximation, an improved element-free Galerkin (IEFG) method for two-dimensional elasticity is derived. There are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method that is formed with the IMLS approximation fewer nodes are selected in the entire domain than are selected in the conventional EFG method. Hence, the IEFG method should result in a higher computing speed. For two-dimensional fracture problems, the enriched basis function is used at the tip of the crack to give an enriched IEFG method. When the enriched IEFG method is used, the singularity of the stresses at the tip of the crack can be shown better than that in the IEFG method. To provide a demonstration, numerical examples are solved using the IEFG method and the enriched IEFG method.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of meshless methods for composite structures is given in this paper, with main emphasis on the element-free Galerkin method and reproducing kernel particle method, including static and dynamic analysis, free vibration, buckling and nonlinear analysis.

344 citations

Journal ArticleDOI
TL;DR: In this paper, a new method for deriving the moving least squares (MLS) approximation is presented, and the interpolating moving least-squares (IMLS) method proposed by Lancaster is improved.
Abstract: In this paper, a new method for deriving the moving least-squares (MLS) approximation is presented, and the interpolating moving least-squares (IMLS) method proposed by Lancaster is improved. Compared with the IMLS method proposed by Lancaster, a simpler formula of the shape function is given in the improved IMLS method in this paper so that the new method has higher computing efficiency. Combining the shape function constructed by the improved IMLS method with Galerkin weak form of the elasticity problems, the interpolating element-free Galerkin (IEFG) method for the two-dimensional elasticity problems is presented, and the corresponding formulae are obtained. In the IEFG method, the boundary conditions can be applied directly which makes the computing efficiency higher than the conventional EFG method. Some numerical examples are presented to demonstrate the validity of the method.

133 citations

Journal ArticleDOI
TL;DR: In this article, the complex variable element-free Galerkin (CVEFG) method for two-dimensional elasto-plasticity problems is presented, which is an approximation method for a vector function.

115 citations

Journal ArticleDOI
TL;DR: The boundary element free method (BEFM) as discussed by the authors is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily; thus it gives a greater computational precision.
Abstract: Combining the boundary integral equation (BIE) method and improved moving least-squares (IMLS) approximation, a direct meshless BIE method, which is called the boundary element-free method (BEFM), for two-dimensional potential problems is discussed in this paper. In the IMLS approximation, the weighted orthogonal functions are used as the basis functions; then the algebra equation system is not ill-conditioned and can be solved without obtaining the inverse matrix. Based on the IMLS approximation and the BIE for two-dimensional potential problems, the formulae of the BEFM are given. The BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily; thus, it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.

112 citations

Journal ArticleDOI
TL;DR: In this article, a tying procedure is proposed to remove the difficulty with the visibility criterion so that crack tip closure can be ensured while the advantages of visibility criterion can be preserved, which is generally applicable for single or multiple crack problems in 2D or 3D.
Abstract: Fracture modelling using numerical methods is well-advanced in 2D using techniques such as the extended finite element method (XFEM). The use of meshless methods for these problems lags somewhat behind, but the potential benefits of no meshing (particularly in 3D) prompt continued research into their development. In methods where the crack face is not explicitly modelled (as the edge of an element for instance), two procedures are instead used to associate the displacement jump with the crack surface: the visibility criterion and the diffraction method. The visibility criterion is simple to implement and efficient to compute, especially with the help of level set coordinates. However, spurious discontinuities have been reported around crack tips using the visibility criterion, whereas implementing the diffraction method in 3D is much more complicated than the visibility criterion. In this paper, a tying procedure is proposed to remove the difficulty with the visibility criterion so that crack tip closure can be ensured while the advantages of the visibility criterion can be preserved. The formulation is based on the use of level set coordinates and the element-free Galerkin method, and is generally applicable for single or multiple crack problems in 2D or 3D. The paper explains the formulation and provides verification of the method against a number of 2D crack problems. Copyright © 2011 John Wiley & Sons, Ltd.

107 citations


Cites background from "Analyzing 2D fracture problems with..."

  • ...Alternatives are to use improved weight functions [33] and enriched weight functions [34, 35], both of which introduce no additional unknowns....

    [...]

References
More filters
Book
01 Jan 1934
TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Abstract: Chapter 1: Stresses and Strains Chapter 2: Foundations of Plasticity Chapter 3: Elasto-Plastic Bending and Torsion Chapter 4: Plastic Analysis of Beams and Frames Chapter 5: Further Solutions of Elasto-Plastic Problems Chapter 6: Theory of the Slipline Field Chapter 7: Steady Problems in Plane Strain Chapter 8: Non-Steady Problems in Plane Strain

20,724 citations

Journal ArticleDOI
TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Abstract: An element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems. In this method, moving least-squares interpolants are used to construct the trial and test functions for the variational principle (weak form); the dependent variable and its gradient are continuous in the entire domain. In contrast to an earlier formulation by Nayroles and coworkers, certain key differences are introduced in the implementation to increase its accuracy. The numerical examples in this paper show that with these modifications, the method does not exhibit any volumetric locking, the rate of convergence can exceed that of finite elements significantly and a high resolution of localized steep gradients can be achieved. The moving least-squares interpolants and the choices of the weight function are also discussed in this paper.

5,324 citations

Journal ArticleDOI
Ted Belytschko1, Y. Krongauz1, D. Organ1, Mark Fleming1, Petr Krysl1 
TL;DR: Meshless approximations based on moving least-squares, kernels, and partitions of unity are examined and it is shown that the three methods are in most cases identical except for the important fact that partitions ofunity enable p-adaptivity to be achieved.

3,082 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of moving least squares (m.l.s.) methods for smoothing and interpolating scattered data is presented, in particular theorems concerning the smoothness of interpolants and the description of m. l.s. processes as projection methods.
Abstract: An analysis of moving least squares (m.l.s.) methods for smoothing and interpolating scattered data is presented. In particular, theorems are proved concerning the smoothness of interpolants and the description of m.l.s. processes as projection methods. Some properties of compositions of the m.l.s. projector, with projectors associated with finiteelement schemes, are also considered. The analysis is accompanied by examples of univariate and bivariate problems.

2,460 citations

Journal ArticleDOI
TL;DR: In this article, a local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy.
Abstract: A local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy. The essential boundary conditions in the present formulation are imposed by a penalty method. The present method does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the “energy”. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. No post-smoothing technique is required for computing the derivatives of the unknown variable, since the original solution, using the moving least squares approximation, is already smooth enough. Several numerical examples are presented in the paper. In the example problems dealing with Laplace & Poisson's equations, high rates of convergence with mesh refinement for the Sobolev norms ||·||0 and ||·||1 have been found, and the values of the unknown variable and its derivatives are quite accurate. In essence, the present meshless method based on the LSWF is found to be a simple, efficient, and attractive method with a great potential in engineering applications.

2,332 citations