scispace - formally typeset
Open accessJournal ArticleDOI: 10.3389/FEVO.2021.633947

Animal cognition in an urbanised world.

04 Mar 2021-Frontiers in Ecology and Evolution (Frontiers Media)-Vol. 9, pp 633947
Abstract: Explaining how animals respond to an increasingly urbanised world is a major challenge for evolutionary biologists. Urban environments often present animals with novel problems that differ from those encountered in their evolutionary past. To navigate these rapidly changing habitats successfully, animals may need to adjust their behaviour flexibly over relatively short timescales. These behavioural changes, in turn, may be facilitated by an ability to acquire, store and process information from the environment. The question of how cognitive abilities allow animals to avoid threats and exploit resources (or constrain their ability to do so) is attracting increasing research interest, with a growing number of studies investigating cognitive and behavioural differences between urban-dwelling animals and their non-urban counterparts. In this review we consider why such differences might arise, focusing on the informational challenges faced by animals living in urban environments, and how different cognitive abilities can assist in overcoming these challenges. We focus largely on birds, as avian taxa have been the subject of most research to date, but discuss work in other species where relevant. We also address the potential consequences of cognitive variation at the individual and species level. For instance, do urban environments select for, or influence the development of, particular cognitive abilities? Are individuals or species with particular cognitive phenotypes more likely to become established in urban habitats? How do other factors, such as social behaviour and individual personality, interact with cognition to influence behaviour in urban environments? The aim of this review is to synthesise current knowledge and identify key avenues for future research, in order to improve our understanding of the ecological and evolutionary consequences of urbanisation.

... read more

Topics: Animal cognition (52%), Cognition (50%)

6 results found

Open accessJournal ArticleDOI: 10.1093/ICB/ICAB065
Abstract: The city and its urban biome provides an extreme laboratory for studying fundamental biological questions and developing best practices for sustaining biodiverse and well-functioning ecological communities within anthropogenic built environments. We propose by studying urban organisms, urban biotic communities, the urban biome, and the interactions between the urban biome and peri-urban built and natural environments, we can (1) discover new "rules of life" for the structure, function, interaction, and evolution of organisms; (2) use these discoveries to understand how novel emerging biotic communities affect and are affected by anthropogenic environmental changes in climate and other environmental factors; and (3) apply what we have learned to engage residents of the urban biome, and design cities that are more biologically diverse, are provided with more and better ecosystem services, and are more equitable and healthier places to live. The built environment of the urban biome is a place that reflects history, economics, technology, governance, culture, and values of the human residents; research on and applications of the rules of life in the urban biome can be used by all residents in making choices about the design of the cities where they live. Because inhabitants are directly invested in the environmental quality of their neighborhoods, research conducted in and about the urban environment provides a great opportunity to engage wide and diverse communities of people. Given the opportunity to engage a broad constituency-from basic researchers to teachers, civil engineers, landscape planners, and concerned citizens-studying the translation of the rules of life onto the urban environment will result in an integrative and cross-cutting set of questions and hypotheses, and will foster a dialog among citizens about the focus of urban biome research and its application toward making more equitable, healthy, livable, sustainable, and biodiverse cities.

... read more

Topics: Built environment (56%), Biome (53%), Environmental quality (50%) ... show more

2 Citations

Open accessJournal ArticleDOI: 10.1016/J.CUB.2021.10.045
17 Nov 2021-Current Biology
Abstract: Summary Behavioral responses to novelty, including fear and subsequent avoidance of novel stimuli, i.e., neophobia, determine how animals interact with their environment. Neophobia aids in navigating risk and impacts on adaptability and survival. There is variation within and between individuals and species; however, lack of large-scale, comparative studies critically limits investigation of the socio-ecological drivers of neophobia. In this study, we tested responses to novel objects and food (alongside familiar food) versus a baseline (familiar food alone) in 10 corvid species (241 subjects) across 10 labs worldwide. There were species differences in the latency to touch familiar food in the novel object and novel food conditions relative to the baseline. Four of seven socio-ecological factors influenced object neophobia: (1) use of urban habitat (versus not), (2) territorial pair versus family group sociality, (3) large versus small maximum flock size, and (4) moderate versus specialized caching (whereas range, hunting live animals, and genus did not), while only maximum flock size influenced food neophobia. We found that, overall, individuals were temporally and contextually repeatable (i.e., consistent) in their novelty responses in all conditions, indicating neophobia is a stable behavioral trait. With this study, we have established a network of corvid researchers, demonstrating potential for further collaboration to explore the evolution of cognition in corvids and other bird species. These novel findings enable us, for the first time in corvids, to identify the socio-ecological correlates of neophobia and grant insight into specific elements that drive higher neophobic responses in this avian family group.

... read more

Topics: Neophobia (69%)

1 Citations

Open accessPosted ContentDOI: 10.1101/2021.11.12.468403
13 Nov 2021-bioRxiv
Abstract: Cognition underlies animal behaviour, which is key to successful conservation strategies, yet largely under-utilised in conservation, though there are recent calls for closer integration. Conservation-relevant cognitive abilities can impact on adaptability and survival, such as neophobia, e.g., responses to novelty, and innovation e.g., problem-solving, particularly in today9s changing world. Bali myna are a critically endangered endemic species, which are a focus of active conservation efforts, including reintroductions. Therefore, gathering cognitive data can aid in improving and developing conservation strategies, like pre-release training and individual selection for release. In 22 captive Bali myna, we tested neophobia (novel object, novel food, control conditions), innovation (bark, cup, lid conditions) and individual repeatability. We found effects of condition and social environment, including longer latencies to touch familiar food in presence than absence of novel items, and between problem-solving tasks, as well as in the presence of conspecifics, compared with being alone, or with conspecifics and competing heterospecifics. Individuals were repeatable in latency responses: 1) temporally in both experiments; 2) contextually in innovation experiment and between both experiments (and approach order), suggesting a stable behaviour trait. These findings are an important starting point for improving conservation strategies in Bali myna and other similarly threatened species.

... read more

Topics: Myna (62%), Neophobia (52%), Leucopsar rothschildi (52%)


231 results found

Open accessJournal ArticleDOI: 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2
01 Oct 2002-BioScience
Abstract: A the many human activities that cause habitat loss (Czech et al. 2000), urban development produces some of the greatest local extinction rates and frequently eliminates the large majority of native species (Vale and Vale 1976, Luniak 1994, Kowarik 1995, Marzluff 2001). Also, urbanization is often more lasting than other types of habitat loss. Throughout much of New England, for example, ecological succession is restoring forest habitat lost from farming and logging, whereas most urbanized areas in that region not only persist but continue to expand and threaten other local ecosystems (Stein et al. 2000). Another great conservation challenge of urban growth is that it replaces the native species that are lost with widespread “weedy” nonnative species. This replacement constitutes the process of biotic homogenization that threatens to reduce the biological uniqueness of local ecosystems (Blair 2001). Urban-gradient studies show that, for many taxa, for example, plants (Kowarik 1995) and birds and butterflies (Blair and Launer 1997), the number of nonnative species increases toward centers of urbanization, while the number of native species decreases. The final conservation challenge of sprawl is its current and growing geographical extent (Benfield et al. 1999). A review by Czech and colleagues (2000) finds that urbanization endangers more species and is more geographically ubiquitous in the mainland United States than any other human activity. Species threatened by urbanization also tend to be threatened by agriculture, recreation, roads, and many other human impacts, emphasizing the uniquely far-reaching transformations that accompany urban sprawl. About 50% of the US population lives in the suburbs, with another 30% living in cities (USCB 2001). Over 5% of the total surface area of the United States is covered by urban and other built-up areas (USCB 2001). This is more land than is covered by the combined total of national and state parks and areas preserved by the Nature Conservancy. More ominously, the growth rate of urban land use is accelerating faster than land preserved as parks or conservation areas by the Conservancy (figure 1). Much of this growth is from the spread of suburban housing. It is estimated, for example, that residential yards occupy 135,000 acres in the state of Missouri (MDC 2002). This residential landscape represents nearly 1% of the total area of Missouri and is nearly three times the area occupied by Missouri state parks. Here I review the growing literature that documents how urban (and suburban) expansion harms native ecosystems. This knowledge can aid conservation efforts in two major ways. One is through the use of ecological principles—such as preserving remnant natural habitat and restoring modified habitats to promote native species conservation—to reduce the impacts of urbanization on native ecosystems. Rare and endangered species sometimes occur in urbanized habitats (Kendle and Forbes 1997, Godefroid 2001) and thus could be conserved there. Managing the large amount of residential vegetation (1% of the state area, as noted above) in ways that promote native plants and animals could also make a significant contribution to conservation.

... read more

Topics: Biodiversity action plan (65%), Biodiversity (54%)

2,754 Citations

Open accessJournal ArticleDOI: 10.1073/PNAS.070039597
Abstract: Structural MRIs of the brains of humans with extensive navigation experience, licensed London taxi drivers, were analyzed and compared with those of control subjects who did not drive taxis. The posterior hippocampi of taxi drivers were significantly larger relative to those of control subjects. A more anterior hippocampal region was larger in control subjects than in taxi drivers. Hippocampal volume correlated with the amount of time spent as a taxi driver (positively in the posterior and negatively in the anterior hippocampus). These data are in accordance with the idea that the posterior hippocampus stores a spatial representation of the environment and can expand regionally to accommodate elaboration of this representation in people with a high dependence on navigational skills. It seems that there is a capacity for local plastic change in the structure of the healthy adult human brain in response to environmental demands.

... read more

2,609 Citations

Journal ArticleDOI: 10.1016/J.BIOCON.2005.09.005
Michael L. McKinney1Institutions (1)
Abstract: When measured by extent and intensity, urbanization is one of the most homogenizing of all major human activities. Cities homogenize the physical environment because they are built to meet the relatively narrow needs of just one species, our own. Also, cities are maintained for centuries in a disequilibrium state from the local natural environment by the importation of vast resources of energy and materials. Consequently, as cities expand across the planet, biological homogenization increases because the same “urban-adaptable” species become increasingly widespread and locally abundant in cities across the planet. As urbanization often produces a local gradient of disturbance, one can also observe a gradient of homogenization. Synanthropic species adapted to intensely modified built habitats at the urban core are “global homogenizers”, found in cities worldwide. However, many suburban and urban fringe habitats are occupied by native species that become regionally widespread. These suburban adapters typically consist of early successional plants and “edge” animal species such as mesopredator mammals, and ground-foraging, omnivorous and frugivorous birds that can utilize gardens, forest fragments and many other habitats available in the suburbs. A basic conservation challenge is that urban biota is often quite diverse and very abundant. The intentional and unintentional importation of species adapted to urban habitats, combined with many food resources imported for human use, often produces local species diversity and abundance that is often equal to or greater than the surrounding landscape. With the important exception of low-income areas, urban human populations often inhabit richly cultivated suburban habitats with a relatively high local floral and faunal diversity and/or abundance without awareness of the global impoverishment caused by urbanization. Equally challenging is that, because so many urban species are immigrants adapting to city habitats, urbanites of all income levels become increasingly disconnected from local indigenous species and their natural ecosystems. Urban conservation should therefore focus on promoting preservation and restoration of local indigenous species.

... read more

Topics: Urban ecology (58%), Urbanization (56%), Species diversity (55%) ... show more

2,439 Citations

Open accessJournal ArticleDOI: 10.1016/J.ANBEHAV.2008.12.022
01 Apr 2009-Animal Behaviour
Abstract: There is increasing interest in individual differences in animal behaviour. Recent research now suggests that an individual's behaviour, once considered to be plastic, may be more predictable than previously thought. Here, we take advantage of the large number of studies that have estimated the repeatability of various behaviours to evaluate whether there is good evidence for consistent individual differences in behaviour and to answer some outstanding questions about possible factors that can influence repeatability. Specifically, we use meta-analysis to ask whether different types of behaviours were more repeatable than others, and if repeatability estimates depended on taxa, sex, age, field versus laboratory, the number of measures and the interval between measures. Some of the overall patterns that were revealed by this analysis were that repeatability estimates were higher in the field compared to the laboratory and repeatability was higher when the interval between observations was short. Mate preference behaviour was one of the best studied but least repeatable behaviours. Our findings prompt new insights into the relative flexibility of different types of behaviour and offer suggestions for the design and analysis of future research.

... read more

Topics: Repeatability (50%)

1,418 Citations

Open accessJournal ArticleDOI: 10.1098/RSPB.2003.2372
Abstract: Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic plasticity in driving genetic evolution. Moderate levels of phenotypic plasticity are optimal in permitting population survival in a new environment and in bringing populations into the realm of attraction of an adaptive peak. High levels of plasticity may increase the probability of population persistence but reduce the likelihood of genetic change, because the plastic response itself places the population close to a peak. Moderate levels of plasticity arise whenever multiple traits, some of which are plastic and others not, form a composite trait involved in the adaptive response. For example, altered behaviours may drive selection on morphology and physiology. Because there is likely to be a considerable element of chance in which behaviours become established, behavioural change followed by morphological and physiological evolution may be a potent force in driving evolution in novel directions. We assess the role of phenotypic plasticity in stimulating evolution by considering two examples from birds: (i) the evolution of red and yellow plumage coloration due to carotenoid consumption; and (ii) the evolution of foraging behaviours on islands. Phenotypic plasticity is widespread in nature and may speed up, slow down, or have little effect on evolutionary change. Moderate levels of plasticity may often facilitate genetic evolution but careful analyses of individual cases are needed to ascertain whether plasticity has been essential or merely incidental to population differentiation.

... read more

Topics: Phenotypic plasticity (62%), Natural selection (55%), Population (54%) ... show more

1,207 Citations

No. of citations received by the Paper in previous years
Network Information
Related Papers (5)