scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions.

TL;DR: A review of the commonly used animal models to study SARS-CoV-2 and COVID-19, including a summary of their susceptibility to infection, the spectrum of symptoms elicited, and the potential for drug development in each model is provided in this paper.
About: This article is published in Pharmacology & Therapeutics.The article was published on 2021-06-23 and is currently open access. It has received 14 citations till now. The article focuses on the topics: Population.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors examined the effect of coinfection ferret models described in this paper on the ability to prevent the most severe effects of viral coinfections and found that vaccination significantly ameliorated influenza-associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 coinfectation.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are cocirculating in the human population. However, only a few cases of viral coinfection with these two viruses have been documented in humans with some people having severe disease and others mild disease. To examine this phenomenon, ferrets were coinfected with SARS-CoV-2 and human seasonal influenza A viruses (IAVs; H1N1 or H3N2) and were compared to animals that received each virus alone. Ferrets were either immunologically naive to both viruses or vaccinated with the 2019 to 2020 split-inactivated influenza virus vaccine. Coinfected naive ferrets lost significantly more body weight than ferrets infected with each virus alone and had more severe inflammation in both the nose and lungs compared to that of ferrets that were single infected with each virus. Coinfected, naive animals had predominantly higher IAV titers than SARS-CoV-2 titers, and IAVs were efficiently transmitted by direct contact to the cohoused ferrets. Comparatively, SARS-CoV-2 failed to transmit to the ferrets that cohoused with coinfected ferrets by direct contact. Moreover, vaccination significantly reduced IAV titers and shortened the viral shedding but did not completely block direct contact transmission of the influenza virus. Notably, vaccination significantly ameliorated influenza-associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 coinfection, suggesting that seasonal influenza virus vaccination is pivotal to prevent severe disease induced by IAV and SARS-CoV-2 coinfection during the COVID-19 pandemic. IMPORTANCE Influenza A viruses cause severe morbidity and mortality during each influenza virus season. The emergence of SARS-CoV-2 infection in the human population offers the opportunity to potential coinfections of both viruses. The development of useful animal models to assess the pathogenesis, transmission, and viral evolution of these viruses as they coinfect a host is of critical importance for the development of vaccines and therapeutics. The ability to prevent the most severe effects of viral coinfections can be studied using effect coinfection ferret models described in this report.

19 citations

Journal ArticleDOI
11 Nov 2021-Viruses
TL;DR: In this article, the SARS-CoV-2 beta variant attains infectibility to BALB/c mice and causes pulmonary changes within 2-3 days post infection, consistent with results seen in other murine models of COVID-19.
Abstract: Small animal models are of crucial importance for assessing COVID-19 countermeasures. Common laboratory mice would be well-suited for this purpose but are not susceptible to infection with wild-type SARS-CoV-2. However, the development of mouse-adapted virus strains has revealed key mutations in the SARS-CoV-2 spike protein that increase infectivity, and interestingly, many of these mutations are also present in naturally occurring SARS-CoV-2 variants of concern. This suggests that these variants might have the ability to infect common laboratory mice. Herein we show that the SARS-CoV-2 beta variant attains infectibility to BALB/c mice and causes pulmonary changes within 2–3 days post infection, consistent with results seen in other murine models of COVID-19, at a reasonable virus dose (2 × 105 PFU). The findings suggest that common laboratory mice can serve as the animal model of choice for testing the effectiveness of antiviral drugs and vaccines against SARS-CoV-2.

14 citations

Journal ArticleDOI
TL;DR: In this article , the authors used the K18-hACE2 mouse model to examine whether activation of the antiviral RNA receptor RIG-I protects mice from lethal SARS-CoV-2 infection and reduces disease severity.
Abstract: The SARS-CoV-2 pandemic has underscored the need for rapidly usable prophylactic and antiviral treatments against emerging viruses. The targeted stimulation of antiviral innate immune receptors can trigger a broad antiviral response that also acts against new, unknown viruses. Here, we used the K18-hACE2 mouse model of COVID-19 to examine whether activation of the antiviral RNA receptor RIG-I protects mice from lethal SARS-CoV-2 infection and reduces disease severity. We found that prophylactic, systemic treatment of mice with the specific RIG-I ligand 3pRNA, but not type I interferon, 1-7 days before viral challenge, improved survival of mice by up to 50%. Survival was also improved with therapeutic 3pRNA treatment starting 1 day after viral challenge. This improved outcome was associated with lower viral load in oropharyngeal swabs and in the lungs and brains of 3pRNA-treated mice. Moreover, 3pRNA-treated mice exhibited reduced lung inflammation and developed a SARS-CoV-2-specific neutralizing antibody response. These results demonstrate that systemic RIG-I activation by therapeutic RNA oligonucleotide agonists is a promising strategy to convey effective, short-term antiviral protection against SARS-CoV-2 infection, and it has great potential as a broad-spectrum approach to constrain the spread of newly emerging viruses until virus-specific therapies and vaccines become available.

13 citations

Posted ContentDOI
06 Aug 2021-bioRxiv
TL;DR: Results reveal that prophylactic RIG-I activation by synthetic RNA oligonucleotides is a promising strategy to convey short-term, unspecific antiviral protection against SARS-CoV-2 infection and may be a suitable broad-spectrum approach to constraining the spread of newly emerging viruses until virus-specific therapies and vaccines become available.
Abstract: The SARS-CoV-2 pandemic has underscored the need for rapidly employable prophylactic and antiviral treatments against emerging viruses. Nucleic acid agonists of the innate immune system can be administered to activate an effective antiviral program for prophylaxis in exposed populations, a measure of particular relevance for SARS-CoV-2 infection due to its efficient evasion of the host antiviral response. In this study, we utilized the K18-hACE2 mouse model of COVID-19 to examine whether prophylactic activation of the antiviral receptor RIG-I protects mice from SARS-CoV-2 infection. Systemic treatment of mice with a specific RIG-I ligand one to seven days prior to infection with a lethal dose of SARS-CoV-2 improved their survival of by up to 50 %. Improved survival was associated with lower viral load in oropharyngeal swabs and in the lungs and brain of RIG-I-treated mice. Moreover, despite antiviral protection, the surviving mice that were treated with RIG-I ligand developed adaptive SARS-CoV-2-specific immunity. These results reveal that prophylactic RIG-I activation by synthetic RNA oligonucleotides is a promising strategy to convey short-term, unspecific antiviral protection against SARS-CoV-2 infection and may be a suitable broad-spectrum approach to constraining the spread of newly emerging viruses until virus-specific therapies and vaccines become available.

11 citations

Journal ArticleDOI
TL;DR: An overview of commonly used COVID-19 animal models and the pathologic features of SARS-CoV-2 infection in these models in relation to their clinical presentation in humans is provided.
Abstract: Translational models have played an important role in the rapid development of safe and effective vaccines and therapeutic agents for the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Animal models recapitulating the clinical and underlying pathological manifestations of COVID-19 have been vital for identification and rational design of safe and effective vaccines and therapies. This manuscript provides an overview of commonly used COVID-19 animal models and the pathologic features of SARS-CoV-2 infection in these models in relation to their clinical presentation in humans. Also discussed are considerations for selecting appropriate animal models for infectious diseases such as COVID-19, the host determinants that can influence species-specific susceptibility to SARS-CoV-2, and the pathogenesis of COVID-19. Finally, the limitations of currently available COVID-19 animal models are highlighted.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

21,455 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Related Papers (5)