scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Anisotropic circular topological structures

01 Feb 2021-Optical Materials Express (Optical Society of America)-Vol. 11, Iss: 2, pp 425-433
TL;DR: In this paper, a cylindrical multilayer structure characterized by anisotropy and topological features was designed to tailor electromagnetic fields into desired patterns with orbital angular momentum in cylinear geometries as ring resonators and fibers.
Abstract: We design cylindrical multilayer structures characterized by anisotropy and topological features. This provides a new approach to tailor electromagnetic fields into desired patterns with orbital angular momentum in cylindrical geometries as ring resonators and fibers. We use transformation optics to deal with anisotropic circular structures, and rigorously define the edge states. The resulting topologically protected high-localized modes, at the core/cladding interface, with angular momentum may trigger the developments of new disorder-robust devices and high Q-microcavities for applications in light transmission, quantum technology, nonlinear optics, TeraHertz devices, and biophysical sensors.
Citations
More filters
Journal Article
TL;DR: In this paper, the authors describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field, which can reproduce the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum and the chiral edge states.
Abstract: We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the \"dimension\" provided by the internal atomic degrees of freedom, yielding a synthetic two-dimensional lattice. Suitable laser coupling between these internal states leads to a uniform magnetic flux within the two-dimensional lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum and the chiral edge states of the associated Chern insulating phases.

300 citations

Journal ArticleDOI
TL;DR: An introduction to the feature issue of Optical Materials Express on Photonic Topological Materials can be found in this paper, where the authors present an overview of the main issues of the issue.
Abstract: An introduction is provided to the feature issue of Optical Materials Express on Photonic Topological Materials.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu/sub eff/, which can be tuned to values not accessible in naturally occurring materials.
Abstract: We show that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu//sub eff/, which can be tuned to values not accessible in naturally occurring materials, including large imaginary components of /spl mu//sub eff/. The microstructure is on a scale much less than the wavelength of radiation, is not resolved by incident microwaves, and uses a very low density of metal so that structures can be extremely lightweight. Most of the structures are resonant due to internal capacitance and inductance, and resonant enhancement combined with compression of electrical energy into a very small volume greatly enhances the energy density at critical locations in the structure, easily by factors of a million and possibly by much more. Weakly nonlinear materials placed at these critical locations will show greatly enhanced effects raising the possibility of manufacturing active structures whose properties can be switched at will between many states.

8,135 citations

Journal ArticleDOI
06 Aug 2004-Science
TL;DR: Recent advances in metamaterials research are described and the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena is discussed.
Abstract: Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.

3,893 citations

Journal ArticleDOI
TL;DR: In this paper, an effective single-band Hamiltonian representing a crystal electron in a uniform magnetic field is constructed from the tight-binding form of a Bloch band by replacing the operator of the Schr\"odinger equation with a matrix method, and the graph of the spectrum over a wide range of "rational" fields is plotted.
Abstract: An effective single-band Hamiltonian representing a crystal electron in a uniform magnetic field is constructed from the tight-binding form of a Bloch band by replacing $\ensuremath{\hbar}\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}$ by the operator $\stackrel{\ensuremath{\rightarrow}}{\mathrm{p}}\ensuremath{-}\frac{e\stackrel{\ensuremath{\rightarrow}}{A}}{c}$. The resultant Schr\"odinger equation becomes a finite-difference equation whose eigenvalues can be computed by a matrix method. The magnetic flux which passes through a lattice cell, divided by a flux quantum, yields a dimensionless parameter whose rationality or irrationality highly influences the nature of the computed spectrum. The graph of the spectrum over a wide range of "rational" fields is plotted. A recursive structure is discovered in the graph, which enables a number of theorems to be proven, bearing particularly on the question of continuity. The recursive structure is not unlike that predicted by Azbel', using a continued fraction for the dimensionless parameter. An iterative algorithm for deriving the clustering pattern of the magnetic subbands is given, which follows from the recursive structure. From this algorithm, the nature of the spectrum at an "irrational" field can be deduced; it is seen to be an uncountable but measure-zero set of points (a Cantor set). Despite these-features, it is shown that the graph is continuous as the magnetic field varies. It is also shown how a spectrum with simplified properties can be derived from the rigorously derived spectrum, by introducing a spread in the field values. This spectrum satisfies all the intuitively desirable properties of a spectrum. The spectrum here presented is shown to agree with that predicted by A. Rauh in a completely different model for crystal electrons in a magnetic field. A new type of magnetic "superlattice" is introduced, constructed so that its unit cell intercepts precisely one quantum of flux. It is shown that this cell represents the periodicity of solutions of the difference equation. It is also shown how this superlattice allows the determination of the wave function at nonlattice sites. Evidence is offered that the wave functions belonging to irrational fields are everywhere defined and are continuous in this model, whereas those belonging to rational fields are only defined on a discrete set of points. A method for investigating these predictions experimentally is sketched.

2,656 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: It is demonstrated that, like their electronic counterparts, electromagnetic CESs can travel in only one direction and are very robust against scattering from disorder; it is found that even large metallic scatterers placed in the path of the propagating edge modes do not induce reflections.
Abstract: One of the most striking phenomena in condensed-matter physics is the quantum Hall effect, which arises in two-dimensional electron systems subject to a large magnetic field applied perpendicular to the plane in which the electrons reside. In such circumstances, current is carried by electrons along the edges of the system, in so-called chiral edge states (CESs). These are states that, as a consequence of nontrivial topological properties of the bulk electronic band structure, have a unique directionality and are robust against scattering from disorder. Recently, it was theoretically predicted that electromagnetic analogues of such electronic edge states could be observed in photonic crystals, which are materials having refractive-index variations with a periodicity comparable to the wavelength of the light passing through them. Here we report the experimental realization and observation of such electromagnetic CESs in a magneto-optical photonic crystal fabricated in the microwave regime. We demonstrate that, like their electronic counterparts, electromagnetic CESs can travel in only one direction and are very robust against scattering from disorder; we find that even large metallic scatterers placed in the path of the propagating edge modes do not induce reflections. These modes may enable the production of new classes of electromagnetic device and experiments that would be impossible using conventional reciprocal photonic states alone. Furthermore, our experimental demonstration and study of photonic CESs provides strong support for the generalization and application of topological band theories to classical and bosonic systems, and may lead to the realization and observation of topological phenomena in a generally much more controlled and customizable fashion than is typically possible with electronic systems.

2,383 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach for the development of planar metamaterial structures is developed, and analytical equivalent circuit models are proposed for isolated and coupled split-ring resonators/CSRRs coupled to planar transmission lines.
Abstract: In this paper, a new approach for the development of planar metamaterial structures is developed. For this purpose, split-ring resonators (SRRs) and complementary split-ring resonators (CSRRs) coupled to planar transmission lines are investigated. The electromagnetic behavior of these elements, as well as their coupling to the host transmission line, are studied, and analytical equivalent-circuit models are proposed for the isolated and coupled SRRs/CSRRs. From these models, the stopband/passband characteristics of the analyzed SRR/CSRR loaded transmission lines are derived. It is shown that, in the long wavelength limit, these stopbands/passbands can be interpreted as due to the presence of negative/positive values for the effective /spl epsiv/ and /spl mu/ of the line. The proposed analysis is of interest in the design of compact microwave devices based on the metamaterial concept.

1,405 citations