scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method.

TL;DR: In this article, a novel accelerated variance-reduced gradient method called ANITA was proposed for finite-sum optimization, which can achieve the optimal convergence result for general convex and strongly convex problems.
Abstract: We propose a novel accelerated variance-reduced gradient method called ANITA for finite-sum optimization. In this paper, we consider both general convex and strongly convex settings. In the general convex setting, ANITA achieves the convergence result $O\big(n\min\big\{1+\log\frac{1}{\epsilon\sqrt{n}}, \log\sqrt{n}\big\} + \sqrt{\frac{nL}{\epsilon}} \big)$, which improves the previous best result $O\big(n\min\{\log\frac{1}{\epsilon}, \log n\}+\sqrt{\frac{nL}{\epsilon}}\big)$ given by Varag (Lan et al., 2019). In particular, for a very wide range of $\epsilon$, i.e., $\epsilon \in (0,\frac{L}{n\log^2\sqrt{n}}]\cup [\frac{1}{\sqrt{n}},+\infty)$, where $\epsilon$ is the error tolerance $f(x_T)-f^*\leq \epsilon$ and $n$ is the number of data samples, ANITA can achieve the optimal convergence result $O\big(n+\sqrt{\frac{nL}{\epsilon}}\big)$ matching the lower bound $\Omega\big(n+\sqrt{\frac{nL}{\epsilon}}\big)$ provided by Woodworth and Srebro (2016). To the best of our knowledge, ANITA is the \emph{first} accelerated algorithm which can \emph{exactly} achieve this optimal result $O\big(n+\sqrt{\frac{nL}{\epsilon}}\big)$ for general convex finite-sum problems. In the strongly convex setting, we also show that ANITA can achieve the optimal convergence result $O\Big(\big(n+\sqrt{\frac{nL}{\mu}}\big)\log\frac{1}{\epsilon}\Big)$ matching the lower bound $\Omega\Big(\big(n+\sqrt{\frac{nL}{\mu}}\big)\log\frac{1}{\epsilon}\Big)$ provided by Lan and Zhou (2015). Moreover, ANITA enjoys a simpler loopless algorithmic structure unlike previous accelerated algorithms such as Katyusha (Allen-Zhu, 2017) and Varag (Lan et al., 2019) where they use an inconvenient double-loop structure. Finally, the experimental results also show that ANITA converges faster than previous state-of-the-art Varag (Lan et al., 2019), validating our theoretical results and confirming the practical superiority of ANITA.
Citations
More filters
Posted Content
TL;DR: The results demonstrate that PAGE not only converges much faster than SGD in training but also achieves the higher test accuracy, validating the theoretical results and confirming the practical superiority of PAGE.
Abstract: In this paper, we propose a novel stochastic gradient estimator -- ProbAbilistic Gradient Estimator (PAGE) -- for nonconvex optimization. PAGE is easy to implement as it is designed via a small adjustment to vanilla SGD: in each iteration, PAGE uses the vanilla minibatch SGD update with probability $p_t$ or reuses the previous gradient with a small adjustment, at a much lower computational cost, with probability $1-p_t$. We give a simple formula for the optimal choice of $p_t$. Moreover, we prove the first tight lower bound $\Omega(n+\frac{\sqrt{n}}{\epsilon^2})$ for nonconvex finite-sum problems, which also leads to a tight lower bound $\Omega(b+\frac{\sqrt{b}}{\epsilon^2})$ for nonconvex online problems, where $b:= \min\{\frac{\sigma^2}{\epsilon^2}, n\}$. Then, we show that PAGE obtains the optimal convergence results $O(n+\frac{\sqrt{n}}{\epsilon^2})$ (finite-sum) and $O(b+\frac{\sqrt{b}}{\epsilon^2})$ (online) matching our lower bounds for both nonconvex finite-sum and online problems. Besides, we also show that for nonconvex functions satisfying the Polyak-Łojasiewicz (PL) condition, PAGE can automatically switch to a faster linear convergence rate $O(\cdot\log \frac{1}{\epsilon})$. Finally, we conduct several deep learning experiments (e.g., LeNet, VGG, ResNet) on real datasets in PyTorch showing that PAGE not only converges much faster than SGD in training but also achieves the higher test accuracy, validating the optimal theoretical results and confirming the practical superiority of PAGE.

57 citations

Posted Content
TL;DR: In this paper, the authors proposed CANITA, which combines the benefits of communication compression and convergence acceleration for distributed optimization, and achieved the first accelerated convergence rate of O(O(big(1+sqrt{\big( 1+\sqrt{L}{\epsilon} + \omega^2+n}{\omega+n} +n}\frac{1}{''big''
Abstract: Due to the high communication cost in distributed and federated learning, methods relying on compressed communication are becoming increasingly popular. Besides, the best theoretically and practically performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of communications (faster convergence), e.g., Nesterov's accelerated gradient descent (Nesterov, 2004) and Adam (Kingma and Ba, 2014). In order to combine the benefits of communication compression and convergence acceleration, we propose a \emph{compressed and accelerated} gradient method for distributed optimization, which we call CANITA. Our CANITA achieves the \emph{first accelerated rate} $O\bigg(\sqrt{\Big(1+\sqrt{\frac{\omega^3}{n}}\Big)\frac{L}{\epsilon}} + \omega\big(\frac{1}{\epsilon}\big)^{\frac{1}{3}}\bigg)$, which improves upon the state-of-the-art non-accelerated rate $O\left((1+\frac{\omega}{n})\frac{L}{\epsilon} + \frac{\omega^2+n}{\omega+n}\frac{1}{\epsilon}\right)$ of DIANA (Khaled et al., 2020b) for distributed general convex problems, where $\epsilon$ is the target error, $L$ is the smooth parameter of the objective, $n$ is the number of machines/devices, and $\omega$ is the compression parameter (larger $\omega$ means more compression can be applied, and no compression implies $\omega=0$). Our results show that as long as the number of devices $n$ is large (often true in distributed/federated learning), or the compression $\omega$ is not very high, CANITA achieves the faster convergence rate $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$, i.e., the number of communication rounds is $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$ (vs. $O\big(\frac{L}{\epsilon}\big)$ achieved by previous works). As a result, CANITA enjoys the advantages of both compression (compressed communication in each round) and acceleration (much fewer communication rounds).

3 citations

Posted Content
TL;DR: In this paper, the authors proposed a new federated learning algorithm, FedPAGE, able to further reduce the communication complexity by utilizing the recent optimal PAGE method (Li et al., 2021) instead of plain SGD in FedAvg.
Abstract: Federated Averaging (FedAvg, also known as Local-SGD) (McMahan et al., 2017) is a classical federated learning algorithm in which clients run multiple local SGD steps before communicating their update to an orchestrating server. We propose a new federated learning algorithm, FedPAGE, able to further reduce the communication complexity by utilizing the recent optimal PAGE method (Li et al., 2021) instead of plain SGD in FedAvg. We show that FedPAGE uses much fewer communication rounds than previous local methods for both federated convex and nonconvex optimization. Concretely, 1) in the convex setting, the number of communication rounds of FedPAGE is $O(\frac{N^{3/4}}{S\epsilon})$, improving the best-known result $O(\frac{N}{S\epsilon})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/4}$, where $N$ is the total number of clients (usually is very large in federated learning), $S$ is the sampled subset of clients in each communication round, and $\epsilon$ is the target error; 2) in the nonconvex setting, the number of communication rounds of FedPAGE is $O(\frac{\sqrt{N}+S}{S\epsilon^2})$, improving the best-known result $O(\frac{N^{2/3}}{S^{2/3}\epsilon^2})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/6}S^{1/3}$, if the sampled clients $S\leq \sqrt{N}$. Note that in both settings, the communication cost for each round is the same for both FedPAGE and SCAFFOLD. As a result, FedPAGE achieves new state-of-the-art results in terms of communication complexity for both federated convex and nonconvex optimization.

2 citations

Posted Content
TL;DR: In this article, the authors conduct a systematic study of the algorithmic techniques in finding near-stationary points of convex finite-sums, and discover a memory-saving variant of OGM-G based on the performance estimation problem approach (Drori and Teboulle, 2014).
Abstract: The problem of finding near-stationary points in convex optimization has not been adequately studied yet, unlike other optimality measures such as minimizing function value. Even in the deterministic case, the optimal method (OGM-G, due to Kim and Fessler (2021)) has just been discovered recently. In this work, we conduct a systematic study of the algorithmic techniques in finding near-stationary points of convex finite-sums. Our main contributions are several algorithmic discoveries: (1) we discover a memory-saving variant of OGM-G based on the performance estimation problem approach (Drori and Teboulle, 2014); (2) we design a new accelerated SVRG variant that can simultaneously achieve fast rates for both minimizing gradient norm and function value; (3) we propose an adaptively regularized accelerated SVRG variant, which does not require the knowledge of some unknown initial constants and achieves near-optimal complexities. We put an emphasis on the simplicity and practicality of the new schemes, which could facilitate future developments.

2 citations

Posted Content
TL;DR: This article proposed six practical extensions of EF21, all supported by strong convergence theory: partial participation, stochastic approximation, variance reduction, proximal setting, momentum and bidirectional compression.
Abstract: First proposed by Seide (2014) as a heuristic, error feedback (EF) is a very popular mechanism for enforcing convergence of distributed gradient-based optimization methods enhanced with communication compression strategies based on the application of contractive compression operators. However, existing theory of EF relies on very strong assumptions (e.g., bounded gradients), and provides pessimistic convergence rates (e.g., while the best known rate for EF in the smooth nonconvex regime, and when full gradients are compressed, is $O(1/T^{2/3})$, the rate of gradient descent in the same regime is $O(1/T)$). Recently, Richt\'{a}rik et al. (2021) proposed a new error feedback mechanism, EF21, based on the construction of a Markov compressor induced by a contractive compressor. EF21 removes the aforementioned theoretical deficiencies of EF and at the same time works better in practice. In this work we propose six practical extensions of EF21, all supported by strong convergence theory: partial participation, stochastic approximation, variance reduction, proximal setting, momentum and bidirectional compression. Several of these techniques were never analyzed in conjunction with EF before, and in cases where they were (e.g., bidirectional compression), our rates are vastly superior.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

40,826 citations

Book
01 Jan 2015
TL;DR: The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way in an advanced undergraduate or beginning graduate course.
Abstract: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.

3,857 citations

Book
14 Jan 2014
TL;DR: A polynomial-time interior-point method for linear optimization was proposed in this paper, where the complexity bound was not only in its complexity, but also in the theoretical pre- diction of its high efficiency was supported by excellent computational results.
Abstract: It was in the middle of the 1980s, when the seminal paper by Kar- markar opened a new epoch in nonlinear optimization The importance of this paper, containing a new polynomial-time algorithm for linear op- timization problems, was not only in its complexity bound At that time, the most surprising feature of this algorithm was that the theoretical pre- diction of its high efficiency was supported by excellent computational results This unusual fact dramatically changed the style and direc- tions of the research in nonlinear optimization Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments In a new rapidly develop- ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19] Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students The idea was to create a course which would reflect the new developments in the field Actually, this was a major challenge At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12]

3,372 citations

Proceedings Article
05 Dec 2013
TL;DR: It is proved that this method enjoys the same fast convergence rate as those of stochastic dual coordinate ascent (SDCA) and Stochastic Average Gradient (SAG), but the analysis is significantly simpler and more intuitive.
Abstract: Stochastic gradient descent is popular for large scale optimization but has slow convergence asymptotically due to the inherent variance. To remedy this problem, we introduce an explicit variance reduction method for stochastic gradient descent which we call stochastic variance reduced gradient (SVRG). For smooth and strongly convex functions, we prove that this method enjoys the same fast convergence rate as those of stochastic dual coordinate ascent (SDCA) and Stochastic Average Gradient (SAG). However, our analysis is significantly simpler and more intuitive. Moreover, unlike SDCA or SAG, our method does not require the storage of gradients, and thus is more easily applicable to complex problems such as some structured prediction problems and neural network learning.

2,539 citations

Journal ArticleDOI
TL;DR: It is intended to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems.
Abstract: In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte Carlo sampling techniques, namely, the stochastic approximation (SA) and the sample average approximation (SAA) methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that the SAA method can efficiently use a specific (say, linear) structure of the considered problem, while the SA approach is a crude subgradient method, which often performs poorly in practice. We intend to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems. We extend the analysis to the case of convex-concave stochastic saddle point problems and present (in our opinion highly encouraging) results of numerical experiments.

2,346 citations