scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Annealing effect on nano-ZnO powder studied from positron lifetime and optical absorption spectroscopy

15 Dec 2006-Journal of Applied Physics (American Institute of Physics)-Vol. 100, Iss: 11, pp 114328
TL;DR: In this article, different thermal stages of generation and recovery of cationic as well as anionic defects in granular ZnO are discussed in the light of XRD, PAL, and optical absorption studies.
Abstract: Mechanical milling and subsequent annealing in air at temperatures between 210 and 1200°C have been carried out on high purity ZnO powder to study the defect generation and recovery in the material. Lowering of average grain size (from 76±1to22±0.5nm) as a result of milling has been estimated from the broadening of x-ray lines. Substantial grain growth in the milled sample occurs above 425°C annealing temperature. Positron annihilation lifetime (PAL) analysis of the samples shows a distinct decrease of the average lifetime of positrons very near the same temperature zone. As indicated from both x-ray diffraction (XRD) and PAL results, high temperature (>700°C) annealed samples have a better crystallinity (or lower defect concentration) than even the nonmilled ZnO. In contrast, the measured optical band gap of the samples (from absorption spectroscopy) does not confirm lowering of defects with high temperature annealing. Thermally generated defects at oxygen sites cause significant modification of the optical absorption; however, they are not efficient traps for positrons. Different thermal stages of generation and recovery of cationic as well as anionic defects in granular ZnO are discussed in the light of XRD, PAL, and optical absorption studies.
Citations
More filters
Journal ArticleDOI
Xiangwen Liu1, Kebin Zhou1, Lei Wang1, Baoyi Wang1, Yadong Li1 
TL;DR: A direct relationship between the concentration of the larger size oxygen vacancy clusters and the reducibility/reactivity of nanosized ceria was revealed, which may be an important step in understanding and designing active sites at the surface of metal oxide catalytic materials.
Abstract: CeO2 is a catalytic material of exceptional technological importance, and the precise role of oxygen vacancies is crucial to the greater understanding of these oxide materials. In this work, two ceria nanorod samples with different types and distributions of oxygen vacancies were synthesized. A direct relationship between the concentration of the larger size oxygen vacancy clusters and the reducibility/reactivity of nanosized ceria was revealed. These results may be an important step in understanding and designing active sites at the surface of metal oxide catalytic materials.

999 citations

Journal ArticleDOI
TL;DR: It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.
Abstract: TiO2 nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

934 citations

Journal ArticleDOI
TL;DR: In this article, the positron annihilation lifetime spectroscopy (PALS) was used to characterize the oxygen vacancy associates in hydrogenation-modified TiO2 by using a positron annihilator lifetime spectrograph.
Abstract: This paper introduces a novel method for characterizing the oxygen vacancy associates in hydrogenation-modified TiO2 by using a positron annihilation lifetime spectroscopy (PALS). It was found that a huge number of small neutral Ti3+–oxygen vacancy associates, some larger size vacancy clusters, and a few voids of vacancy associates were introduced into hydrogenated TiO2. The defects blurred the atomic lattice high-resolution transmission electron microscopy (HRTEM) images and brought about the emergence of new Raman vibration. X-ray photoelectron spectroscopy (XPS) measurement indicated that the concentration of oxygen vacancies was 3% in the TiO2 lattice. The photoluminescence (PL) spectroscopy, photocurrent, and degradation of methylene blue indicated that the oxygen vacancy associates introduced by hydrogenation retarded the charge recombination and therefore improved the photocatalytic activity remarkably.

477 citations

Journal ArticleDOI
TL;DR: In this paper, a brief account of the evolution of defects due to controlled changes in polycrystalline zinc oxide has been presented and a coherent scenario in the light of previous works in this field has been discussed.

289 citations

Journal ArticleDOI
TL;DR: In this paper, the interplay between oxygen vacancies and Ag-CeO 2 interaction has been investigated in the context of metal-O 2 catalysts and the shape of the CeO 2 support.

287 citations

References
More filters
Book
01 Jan 2001

19,319 citations

Book
01 Jan 1956
TL;DR: In this article, the authors present a chemical analysis of X-ray diffraction by Xray Spectrometry and phase-diagram Determination of single crystal structures and phase diagrams.
Abstract: 1. Properties of X-rays. 2. Geometry of Crystals. 3. Diffraction I: Directions of Diffracted Beams. 4. Diffraction II: Intensities of Diffracted Beams. 5. Diffraction III: Non-Ideal Samples. 6. Laure Photographs. 7. Powder Photographs. 8. Diffractometer and Spectrometer. 9. Orientation and Quality of Single Crystals. 10. Structure of Polycrystalline Aggregates. 11. Determination of Crystal Structure. 12. Precise Parameter Measurements. 13. Phase-Diagram Determination. 14. Order-Disorder Transformation. 15. Chemical Analysis of X-ray Diffraction. 16. Chemical Analysis by X-ray Spectrometry. 17. Measurements of Residual Stress. 18. Polymers. 19. Small Angle Scatters. 20. Transmission Electron Microscope.

17,428 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Book
01 Jan 1971
TL;DR: Optical processes in semiconductors as mentioned in this paper, Optical Process in Semiconductors (OPP), Optical Process of Semiconductor (OPS) and Optical Process (OPI)
Abstract: Optical processes in semiconductors , Optical processes in semiconductors , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

4,630 citations