scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Annotating Dance Posture Images Using Multi Kernel Feature Combination

TL;DR: A novel dance posture based annotation model by combining features using Multiple Kernel Learning (MKL) and a novel feature representation which represents the local texture properties of the image is proposed.
Abstract: We present a novel dance posture based annotation model by combining features using Multiple Kernel Learning (MKL). We have proposed a novel feature representation which represents the local texture properties of the image. The annotation model is defined in the direct a cyclic graph structure using the binary MKL algorithm. The bag-of-words model is applied for image representation. The experiments have been performed on the image collection belonging to two Indian classical dances (Bharatnatyam and Odissi). The annotation model has been tested using SIFT and the proposed feature individually and by optimally combining both the features. The experiments have shown promising results.
Citations
More filters
Proceedings ArticleDOI
03 Sep 2012
TL;DR: A computational model to represent BN dance steps is proposed as a SMart system for modelling BN steps, where SMart stands for System Modelled art and the detailed description of formulation of a dance position vector that comprises of thirty explicitly identified attributes is presented.
Abstract: BharataNatyam (BN) like any other Indian classical dance comprises of a sequence of possible and legitimate dance steps. It is estimated that using the main body parts namely head, neck, hand and leg itself, more than 5 lakh dance steps can be generated for a single beat. Choreographers and even dancers usually repeat their favorite dance steps or the conventional casual dance steps taught by their teacher while performing for multiple beats. As a result several valid and many other significant non-traditional dance steps remain unexplored. Hence, we propose to have an auto enumeration followed by auto classification of significant BN dance steps that can be used in dance performance and choreography. In short, we try to transform sheer art into a System Modelled art i.e. 'Art to SMart'. The foremost and most challenging task is to have a computational model that represents different BN dance poses. In this paper, we have proposed a computational model to represent BN dance steps and have presented the detailed description of formulation of a dance position vector that comprises of thirty explicitly identified attributes to capture and represent all variations of a BN dance step. We have named it as a SMart system for modelling BN steps, where SMart stands for System Modelled art. We have also demonstrated sample dance steps and their corresponding representations with appropriate dance step images.

14 citations

Journal ArticleDOI
TL;DR: The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill.
Abstract: The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis These advancements have eventually led to the birth of Augmented Reality (AR) technology, which means embedding virtual objects into the real-world environment The primary focus of this research was to solve the long-term learning retention and poor learning efficiency for mastering a dance skill through the AR technology based on constructivism learning theory, Dreyfus model and Technology Acceptance Model (TAM) The problem analysis carried out in this research had major research findings, in which the retention and learning efficiency of a dance training system were predominantly determined through the type of learning theory adopted, learning environment, training tools, skill acquisition technology and type of AR technique Therefore, the influential factors for the user acceptance of AR-based dance training system (ARDTS) were based on quantitative analysis These influential factors were determined to address the problem of knowledge gap on acceptance of AR-based systems for dance education through self-learning The evaluation and testing were conducted to validate the developed and implemented ARDTS system The Technology Acceptance Model (TAM) as the evaluation model and quantitative analysis was done with a research instrument that encompassed external and internal variables TAM consisted of 37 items, in which six factors were used to assess the new developed ARDTS by the authors and its acceptability among 86 subjects The current study had investigated the potential use of AR-based dance training system to promote a particular dance skill among a sample population with various backgrounds and interests The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill

13 citations

01 Jan 2012
TL;DR: The empiric results showed that probabilistic grammar-based classifiers that were induced using the Alergia algorithm with Symbolic Aggregate Approximation (SAX) discretization method achieved 92% of average precision in recognizing a predefined set of dance gestures.
Abstract: Automatic recognition of dance gesture is one important research area in computer vision with many potential applications. Bali traditional dance comprises of many dance gestures that relatively unchanged over the years. Although previous studies have reported various methods for recognizing gesture, to the best of our knowledge, a method to model and classify dance gesture of Bali traditional dance is still unfound in literature. The aim of this paper is to build a robust recognizer based on linguistic motivated method to recognize dance gesture of Bali traditional dance choreography. The empiric results showed that probabilistic grammar-based classifiers that were induced using the Alergia algorithm with Symbolic Aggregate Approximation (SAX) discretization method achieved 92% of average precision in recognizing a predefined set of dance gestures. The study also showed that the most discriminative features to represent Bali traditional dance gestures are skeleton joint features of: left/right

8 citations

References
More filters
Journal ArticleDOI
TL;DR: The primary goal of this study is to promote an integration of methods and techniques for MIR by contributing a conceptual model that encompasses in a unified and coherent perspective the many efforts that are being produced under the label of MIR.
Abstract: Research on multimedia information retrieval (MIR) has recently witnessed a booming interest. A prominent feature of this research trend is its simultaneous but independent materialization within several fields of computer science. The resulting richness of paradigms, methods and systems may, on the long run, result in a fragmentation of efforts and slow down progress. The primary goal of this study is to promote an integration of methods and techniques for MIR by contributing a conceptual model that encompasses in a unified and coherent perspective the many efforts that are being produced under the label of MIR. The model offers a retrieval capability that spans two media, text and images, but also several dimensions: form, content and structure. In this way, it reconciles similarity-based methods with semantics-based ones, providing the guidelines for the design of systems that are able to provide a generalized multimedia retrieval service, in which the existing forms of retrieval not only coexist, but can be combined in any desired manner. The model is formulated in terms of a fuzzy description logic, which plays a twofold role: (1) it directly models semantics-based retrieval, and (2) it offers an ideal framework for the integration of the multimedia and multidimensional aspects of retrieval mentioned above. The model also accounts for relevance feedback in both text and image retrieval, integrating known techniques for taking into account user judgments. The implementation of the model is addressed by presenting a decomposition technique that reduces query evaluation to the processing of simpler requests, each of which can be solved by means of widely known methods for text and image retrieval, and semantic processing. A prototype for multidimensional image retrieval is presented that shows this decomposition technique at work in a significant case.

126 citations


"Annotating Dance Posture Images Usi..." refers background in this paper

  • ...The early works on image annotations incorporated the relevance feedback obtained from the user in different forms [12][13]....

    [...]

Proceedings ArticleDOI
06 Nov 2005
TL;DR: This paper proposes to learn the correspondence between image regions and keywords through Multiple-Instance Learning (MIL), and considers image annotation as a problem of image classification, in which each keyword is treated as a distinct class label.
Abstract: In an annotated image database, keywords are usually associated with images instead of individual regions, which poses a major challenge for any region based image annotation algorithm In this paper, we propose to learn the correspondence between image regions and keywords through Multiple-Instance Learning (MIL) After a representative image region has been learned for a given keyword, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label The classification problem is then addressed using the Bayesian framework The proposed image annotation method is evaluated on an image database with 5,000 images

92 citations


"Annotating Dance Posture Images Usi..." refers background in this paper

  • ...region based and global features have been researched and developed [10], [11]....

    [...]

Proceedings ArticleDOI
23 Jul 2007
TL;DR: A novel hyperbolic visualization framework is seamlessly incorporated to enable intuitive query specification and evaluation by acquainting the users with a good global view of large-scale image collections.
Abstract: In this paper, a hierarchical classification framework has been proposed for bridging the semantic gap effectively and achieving multi-level image annotation automatically. First, the semantic gap between the low-level computable visual features and users' real information needs is partitioned into four smaller gaps, and multiple approachesallare proposed to bridge these smaller gaps more effectively. To learn more reliable contextual relationships between the atomic image concepts and the co-appearances of salient objects, a multi-modal boosting algorithm is proposed. To enable hierarchical image classification and avoid inter-level error transmission, a hierarchical boosting algorithm is proposed by incorporating concept ontology and multi-task learning to achieve hierarchical image classifier training with automatic error recovery. To bridge the gap between the computable image concepts and the users' real information needs, a novel hyperbolic visualization framework is seamlessly incorporated to enable intuitive query specification and evaluation by acquainting the users with a good global view of large-scale image collections. Our experiments on large-scale image databases have also obtained very positive results.

84 citations


"Annotating Dance Posture Images Usi..." refers background in this paper

  • ...[18] have proposed hierarchical classification for multi-level image annotation....

    [...]

Journal ArticleDOI
TL;DR: A novel approach to automatic image annotation which combines global, regional, and contextual features by an extended cross-media relevance model that describes the global features as a distribution vector of visual topics and model the textual context as a multinomial distribution.

70 citations


"Annotating Dance Posture Images Usi..." refers background in this paper

  • ...region based and global features have been researched and developed [10], [11]....

    [...]

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work moves pre-processing steps into the learning system by means of kernel parameters, letting the learning algorithm decide upon suitable parameter values, and shows that it is possible to learn optimal discriminative codebooks and optimal spatial pyramid schemes, consistently outperforming all previous state-of-the-art approaches.
Abstract: Most modern computer vision systems for high-level tasks, such as image classification, object recognition and segmentation, are based on learning algorithms that are able to separate discriminative information from noise. In practice, however, the typical system consists of a long pipeline of pre-processing steps, such as extraction of different kinds of features, various kinds of normalizations, feature selection, and quantization into aggregated representations such as histograms. Along this pipeline, there are many parameters to set and choices to make, and their effect on the overall system performance is a-priori unclear. In this work, we shorten the pipeline in a principled way. We move pre-processing steps into the learning system by means of kernel parameters, letting the learning algorithm decide upon suitable parameter values. Learning to optimize the pre-processing choices becomes learning the kernel parameters. We realize this paradigm by extending the recent Multiple Kernel Learning formulation from the finite case of having a fixed number of kernels which can be combined to the general infinite case where each possible parameter setting induces an associated kernel. We evaluate the new paradigm extensively on image classification and object classification tasks. We show that it is possible to learn optimal discriminative codebooks and optimal spatial pyramid schemes, consistently outperforming all previous state-of-the-art approaches.

62 citations


"Annotating Dance Posture Images Usi..." refers methods in this paper

  • ...In the MKL, optimal kernel for the task is learned from data instead of following conventional grid based search method [7], [8], [9]....

    [...]