scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe2O4

07 Aug 2014-Applied Physics Letters (American Institute of Physics)-Vol. 105, Iss: 5, pp 052412
TL;DR: In this article, the authors reported the behavior of higher magnetization values for zero field cooled condition to that of Field Cooled for the reduced graphene oxide-Nickel/NiFe2O4 (RGO-Ni/NF) nanocomposite.
Abstract: Magnetic Reduced Graphene Oxide-Nickel/NiFe2O4 (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.
Citations
More filters
Journal ArticleDOI
TL;DR: Magnetic cobalt and nickel ferrites with graphene nanocomposites were synthesized via a solvothermal process and used as an adsorbent for the removal of lead (Pb) and cadmium (Cd(II)) ions from aqueous solution.
Abstract: Magnetic cobalt and nickel ferrites (CoFe2O4 & NiFe2O4) with graphene nanocomposites (CoFe2O4–G & NiFe2O4–G) were synthesized via a solvothermal process and used as an adsorbent for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solution. The as-prepared materials were characterized by field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), a Brunauer–Emmett–Teller (BET) surface area analyzer, transmission electron microscopy (TEM) and VSM analysis. To probe the nature of the adsorbent, various experiments were investigated like contact time, adsorbent dose, solution pH and temperature were optimized. The isotherm model fitting studies demonstrated that the data fitted the Langmuir isotherm model well. The highest adsorption equilibrium for Pb(II) is 142.8 and 111.1 mg g−1 at pH of 5 and 310 K for CoFe2O4–G & NiFe2O4–G; while for Cd(II) it was 105.26 and 74.62 mg g−1 at pH of 7 and 310 K. The results show that such type of materials could be used for the removal of heavy metal ions from water for environmental applications.

70 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D-carbon-fabric-mat with Ni-NiFe2O4/ABS nanocomposites was used to evaluate the shielding performance in the X-band.

41 citations

Journal ArticleDOI
TL;DR: In this article, the structure and morphology of the as-synthesized nanocomposite was investigated by X-ray diffraction and electron microscopy techniques. And the experimental results revealed that the material is a good electrocatalyst towards hydrogen production.

41 citations

Journal ArticleDOI
TL;DR: In this article, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO) nanocomposites, where Ni is a composition of Ni(OH)2, NiOOH, NiO, Ni2O3 and NiO2), 3 wt% NiO/GO (Ni/GO-1) and 8 wt%.
Abstract: In this study, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO) nanocomposites (Ni/GO, where Ni is a composition of Ni(OH)2, NiOOH, NiO, Ni2O3 and NiO2), 3 wt% NiO/GO (Ni/GO-1) and 8 wt% NiO/GO(Ni/GO-2). The developed method is not only very simple and efficient, but also, the morphology of Ni/GO nanocomposites can be tuned by simply varying the metal loading. Morphology and specific surface area of the resultant Ni/GO nanocomposites were investigated by mean of AFM, HR-TEM and BET. Chemical sate and factual content of Ni in Ni/GO-1 and Ni/GO-2, and the presence of defective sites in Ni-nanocomposites were investigated in detail. To our delight, the prepared Ni/GO-2 demonstrated superior catalytic activity toward the reduction of 2- and 4-nitrophenol in water with high rate constant (kapp) of 35.4 × 10−3 s−1. To the best of our knowledge, this is the best efficient Ni-based graphene nanocomposites for the reduction of 2- and 4-NP reported to date. The Ni/GO-1 and Ni/GO-2 demonstrated an excellent reusability; no loss in its catalytic activity was noticed, even after 10th cycle. Surprisingly the Ni/GO-2 as electrode material exhibited an excellent specific capacitance of 461 F/g in 6 M KOH at a scan rate of 5 mV. Moreover, the Ni/GO nanocomposites were found to possess poor electrical resistance and high stability (no significant change in the specific capacitance even after 1000 cycles).

31 citations

Journal ArticleDOI
17 Mar 2020
TL;DR: In this article, the authors present existing work for the future development of 2D carbon-based devices, and present the most interesting effect of structural disorder can be seen in the field of magnetism.
Abstract: Two dimensional (2D) carbonaceous materials such as graphene and its derivatives, e.g., graphdiyne, have enormous potential possibilities in major fields of scientific research. Theoretically, it has been proposed that the perfect atomic lattice arrangement of these materials is responsible for their outstanding physical and chemical properties, and also for their poor magnetic properties. Experimentally, it is difficult to obtain a perfect atomic lattice of carbon atoms due to the appearance of structural disorder. This structural disorder is generated during the growth or synthesis of carbon-related materials. Investigations of structural disorder reveal that it can offer both advantages and disadvantages depending on the application. For instance, disorder reduces the thermal and mechanical stability, and deteriorates the performance of 2D carbon-based electronic devices. The most interesting effect of structural disorder can be seen in the field of magnetism. Disorder not only creates magnetic ordering within 2D carbon materials but also influences the local electronic structure, which opens the door for future spintronic devices. Although various studies on the disorder induced magnetism of 2D carbon materials are available in the literature, some parts of the above field have still not been fully exploited. This review presents existing work for the future development of 2D carbon-based devices.

26 citations

References
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: In this paper, a model of the magnetization within these particles consisting of ferrimagnetically aligned core spins and a spin-glass-like surface layer is proposed, and the qualitative features of this model are reproduced by a numerical calculation of the spin distribution.
Abstract: Nickel ferrite nanoparticles exhibit anomalous magnetic properties at low temperatures: low magnetization with a large differential susceptibility at high fields, hysteresis loops which are open up to 160 kOe, time-dependent magnetization in 70 kOe applied field, and shifted hysteresis loops after field cooling. We propose a model of the magnetization within these particles consisting of ferrimagnetically aligned core spins and a spin-glass-like surface layer. We find that qualitative features of this model are reproduced by a numerical calculation of the spin distribution. Implications of this model for possible macroscopic quantum tunneling in these materials are discussed.

1,407 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the core of a spinel has a canted structure and the canting angle increases with grain size reduction due to the magnetocrystalline anisotropy introduced by the occupancy of the ions in the tetrahedral sites.
Abstract: Nanocrystalline ${\mathrm{NiFe}}_{2}{\mathrm{O}}_{4}$ spinel has been synthesized with various grain sizes by high-energy ball milling. From the high-field magnetization studies and extended x-ray-absorption fine-structure, and M\"ossbauer measurements in an external magnetic field of 5 T applied parallel to the direction of gamma rays, we could observe that ${\mathrm{Ni}}^{2+}$ ions occupy tetrahedral sites on grain-size reduction due to milling. The ${\mathrm{Fe}}^{3+}$ spins have a canted structure and the canting angle increases with grain-size reduction. It is possible that the core ${\mathrm{Fe}}^{3+}$ spins are also canted because of the magnetocrystalline anisotropy introduced by the occupancy of the ${\mathrm{Ni}}^{2+}$ ions in the tetrahedral sites.

391 citations