scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome.

TL;DR: In this article, the NLRP3 inflammasome is considered a novel target of melatonin, which contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation.
Abstract: Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors introduce the canonical NLRP3 inflammasome activation pathway and review the cellular/molecular mechanisms of NNBP3 activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade).

72 citations

Journal ArticleDOI
TL;DR: In this article, the anti-inflammatory effects of melatonin were investigated in vitro and in vivo, using 1-methyl-4-phenylpyridinium (MPP+)-simulated BV2 and primary microglia cell models, with or without melatonin treatment.
Abstract: Background Inflammasome-induced neuroinflammation is a key contributor to the pathology of Parkinson's disease (PD). NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation has been implicated in PD in postmortem human PD brains, indicating it as a potential target for PD treatment. Melatonin, a multitasking molecule, has been found to have anti-inflammatory activities, mediated by silence information regulator 1 (SIRT1). However, whether and how melatonin is involved in inflammasome-induced neuroinflammation in PD pathogenesis remains unclear. Methods We investigated the potential anti-inflammatory effects of melatonin in vitro and in vivo, using 1-methyl-4-phenylpyridinium (MPP+)-simulated BV2 and primary microglia cell models, and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine PD model, with or without melatonin treatment. Rotarod, grip strength, and open-field tests were performed to measure the effects of melatonin on MPTP-induced motor disorders. Degeneration of dopaminergic neurons was evaluated by immunofluorescence. Changes in microglia were examined by immunofluorescence and Western blotting, and the expression levels of the involved signaling molecules were assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) was detected using fluorescent probes via flow cytometry. Results We found that melatonin significantly alleviated motor dysfunction and prevented MPTP-induced neurotoxicity in dopaminergic neurons. Additionally, melatonin reduced MPTP-induced microglial activation and suppressed NLRP3 inflammasome activity, and also inhibited IL-1β secretion. Moreover, in MPP+-primed BV2 cells, melatonin markedly restored the downregulation of SIRT1 and attenuated the activation of the NLRP3 inflammasome. This was reversed by SIRT1 inhibitor treatment. Conclusion In conclusion, our data demonstrated that melatonin attenuates neuroinflammation by negatively regulating NLRP3 inflammasome activation via a SIRT1-dependent pathway in MPTP-induced PD models. These findings provide novel insights into the mechanism underlying the anti-inflammatory effects of melatonin in PD.

33 citations

Journal ArticleDOI
16 Jun 2021-Cancers
TL;DR: In this article, the effects of melatonin on cancer metabolism were investigated and shown to have significant anti-cancer effects at malignancy initiation, progression, and metastasing at malignant initiation and progression, such as HIF-1 and p53.
Abstract: Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically present and summarize the results of studies (both experimental and clinical) that investigated the role of Melatonin in the AD, with a focus on the antioxidant and immunomodulatory effects of MT.
Abstract: Atopic dermatitis (AD) is common inflammatory dermatosis, typically with chronic and recurrent course, which significantly reduces the quality of life. Sleep disturbances are considered to be remarkably burdensome ailments in patients with AD, and are routinely included during assessment of disease severity. Therefore, endogenous substances engaged in the control of circadian rhythms might be important in pathogenesis of AD and, possibly, be used as biomarkers of disease severity or even in development of novel therapies. Melatonin (MT), the indoleamine produced by pineal gland (but also by multiple other tissues, including skin), plays a pivotal role in maintaining the sleep/wake homeostasis. Additionally, it possesses strong antioxidant and anti-inflammatory properties, which might directly link chronic skin inflammation and sleep abnormalities characteristic of AD. The objective of this work is to systematically present and summarize the results of studies (both experimental and clinical) that investigated the role of MT in the AD, with a focus on the antioxidant and immunomodulatory effects of MT.

12 citations

Journal ArticleDOI
10 Apr 2021-Diseases
TL;DR: In this article, the authors consider the use and development of melatonin-based therapeutic strategies, which could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms.
Abstract: Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: It is found that intraflagellar transport 20 mediates the ability of Ror2 signaling to induce the invasiveness of tumors that lack primary cilia, and IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex.
Abstract: Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.

13,354 citations

Journal ArticleDOI
TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

7,551 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.

6,987 citations

Journal ArticleDOI
TL;DR: The description outlined here facilitates the understanding of factors that favour mitochondrial ROS production and develops better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
Abstract: The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.

6,371 citations

Journal ArticleDOI
06 Apr 1995-Nature
TL;DR: The potent immune activation by CpG oligon nucleotides has impli-cations for the design and interpretation of studies using 'antisense' oligonucleotides and points to possible new applications as adjuvants.
Abstract: Unmethylated CpG dinucleotides are more frequent in the genomes of bacteria and viruses than of vertebrates. We report here that bacterial DNA and synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides induce murine B cells to proliferate and secrete immunoglobulin in vitro and in vivo. This activation is enhanced by simultaneous signals delivered through the antigen receptor. Optimal B-cell activation requires a DNA motif in which an unmethylated CpG dinucleotide is flanked by two 5' purines and two 3' pyrimidines. Oligodeoxynucleotides containing this CpG motif induce more than 95% of all spleen B cells to enter the cell cycle. These data suggest a possible evolutionary link between immune defence based on the recognition of microbial DNA and the phenomenon of 'CpG suppression' in vertebrates. The potent immune activation by CpG oligonucleotides has implications for the design and interpretation of studies using 'antisense' oligonucleotides and points to possible new applications as adjuvants.

3,742 citations