scispace - formally typeset
Journal ArticleDOI: 10.1007/S10753-021-01428-9

Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome.

02 Mar 2021-Inflammation (Springer US)-Vol. 44, Iss: 4, pp 1207-1222
Abstract: Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.

... read more

Topics: Melatonin (62%), Inflammasome (59%), Pineal gland (53%) ... show more
Citations
  More

6 results found


Open accessJournal ArticleDOI: 10.1016/J.CYTOGFR.2021.06.002
Ni Zhao1, Bin Di2, Bin Di1, Li-Li Xu1  +1 moreInstitutions (2)
Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.

... read more

Topics: Inflammasome (68%), Cytokine storm (56%), Proinflammatory cytokine (52%) ... show more

9 Citations


Open accessJournal ArticleDOI: 10.3390/ANTIOX10081179
24 Jul 2021-Antioxidants
Abstract: Atopic dermatitis (AD) is common inflammatory dermatosis, typically with chronic and recurrent course, which significantly reduces the quality of life. Sleep disturbances are considered to be remarkably burdensome ailments in patients with AD, and are routinely included during assessment of disease severity. Therefore, endogenous substances engaged in the control of circadian rhythms might be important in pathogenesis of AD and, possibly, be used as biomarkers of disease severity or even in development of novel therapies. Melatonin (MT), the indoleamine produced by pineal gland (but also by multiple other tissues, including skin), plays a pivotal role in maintaining the sleep/wake homeostasis. Additionally, it possesses strong antioxidant and anti-inflammatory properties, which might directly link chronic skin inflammation and sleep abnormalities characteristic of AD. The objective of this work is to systematically present and summarize the results of studies (both experimental and clinical) that investigated the role of MT in the AD, with a focus on the antioxidant and immunomodulatory effects of MT.

... read more

Topics: Melatonin (54%), Atopic dermatitis (53%)

1 Citations


Open accessJournal ArticleDOI: 10.3390/CANCERS13123018
Marek Samec1, Alena Liskova1, Lenka Koklesova1, Kevin Zhai2  +14 moreInstitutions (6)
16 Jun 2021-Cancers
Abstract: Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.

... read more

Topics: Melatonin (64%), Pineal gland (55%), Lipid metabolism (52%) ... show more

1 Citations


Open accessJournal ArticleDOI: 10.3390/DISEASES9020027
10 Apr 2021-Diseases
Abstract: Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.3389/FCELL.2021.717913
Zi-Yi Feng1, Shu-De Yang1, Ting Wang1, Shu Guo1Institutions (1)
Abstract: Melatonin is a hormone, synthesized in the pineal gland, which primarily controls the circadian rhythm of the body. In recent years, melatonin has also been shown to regulate metabolism, provide neuroprotection, and act as an anti-inflammatory, free radical scavenger. There has also been a recent research interest in the role of melatonin in regulating mesenchymal stromal cells (MSCs). MSCs are pivotal for their ability to differentiate into a variety of different tissues. There is also increasing evidence for the therapeutic prospects of MSCs via paracrine signaling. In addition to secreting cytokines and chemokines, MSCs can secrete extracellular vesicles (EVs), allowing them to respond to injury and promote tissue regeneration. While there has been a major research interest in the use of MSCs for regenerative medicine, the clinical application is limited by many risks, including tumorigenicity, senescence, and sensitivity to toxic environments. The use of MSC-derived EVs for cell-free therapy can potentially avoid the disadvantages of MSCs, which makes this an exciting prospect for regenerative medicine. Prior research has shown that MSCs, via paracrine mechanisms, can identify receptor-independent responses to melatonin and then activate a series of downstream pathways, which exert a variety of effects, including anti-tumor and anti-inflammatory effects. Here we review the synthesis of melatonin, its mechanisms of action, and the effect of melatonin on MSCs via paracrine signaling. Furthermore, we summarize the current clinical applications of melatonin and discuss future prospects.

... read more

Topics: Melatonin (55%), Free radical scavenger (54%), Mesenchymal stem cell (53%) ... show more

References
  More

202 results found


Open accessJournal ArticleDOI: 10.1038/S41598-016-0028-X
Michiru Nishita1, Seung-Yeol Park2, Tadashi Nishio1, Koki Kamizaki1  +8 moreInstitutions (5)
26 Jan 2017-Scientific Reports
Abstract: Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.

... read more

Topics: Golgi apparatus (58%), Invadopodia (56%), Intraflagellar transport (51%) ... show more

8,752 Citations


Journal ArticleDOI: 10.1056/NEJMRA043430
Göran K. Hansson1Institutions (1)
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

... read more

Topics: Coronary artery disease (54%), Cause of death (52%), Disease (52%)

7,029 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2010.01.022
Osamu Takeuchi1, Shizuo Akira1Institutions (1)
19 Mar 2010-Cell
Abstract: Infection of cells by microorganisms activates the inflammatory response. The initial sensing of infection is mediated by innate pattern recognition receptors (PRRs), which include Toll-like receptors, RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors. The intracellular signaling cascades triggered by these PRRs lead to transcriptional expression of inflammatory mediators that coordinate the elimination of pathogens and infected cells. However, aberrant activation of this system leads to immunodeficiency, septic shock, or induction of autoimmunity. In this Review, we discuss the role of PRRs, their signaling pathways, and how they control inflammatory responses.

... read more

Topics: Immune receptor (64%), Pattern recognition receptor (60%), NOD-like receptor (60%) ... show more

5,827 Citations


Open accessJournal ArticleDOI: 10.1042/BJ20081386
Abstract: The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.

... read more

Topics: Mitochondrial ROS (65%), MitoQ (61%), Mitochondrion (56%) ... show more

5,363 Citations


Journal ArticleDOI: 10.1038/374546A0
Arthur M. Krieg1, Ae-Kyung Yi1, Sara Matson1, Thomas J. Waldschmidt1  +5 moreInstitutions (2)
06 Apr 1995-Nature
Abstract: Unmethylated CpG dinucleotides are more frequent in the genomes of bacteria and viruses than of vertebrates. We report here that bacterial DNA and synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides induce murine B cells to proliferate and secrete immunoglobulin in vitro and in vivo. This activation is enhanced by simultaneous signals delivered through the antigen receptor. Optimal B-cell activation requires a DNA motif in which an unmethylated CpG dinucleotide is flanked by two 5' purines and two 3' pyrimidines. Oligodeoxynucleotides containing this CpG motif induce more than 95% of all spleen B cells to enter the cell cycle. These data suggest a possible evolutionary link between immune defence based on the recognition of microbial DNA and the phenomenon of 'CpG suppression' in vertebrates. The potent immune activation by CpG oligonucleotides has implications for the design and interpretation of studies using 'antisense' oligonucleotides and points to possible new applications as adjuvants.

... read more

Topics: CpG Oligodeoxynucleotide (67%), Toll-Like Receptor 9 (65%), CpG site (64%) ... show more

3,658 Citations