scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Antiferromagnetism. Theory of Superexchange Interaction

Peter J. Anderson1
15 Jul 1950-Physical Review (American Physical Society)-Vol. 79, Iss: 2, pp 350-356
TL;DR: In this article, the general formalism of Kramers indicating the existence of superexchange interaction has been reduced, under simplifying assumptions, to the point where actual formulas for the interaction can be written down directly in terms of spin operators, with certain exchange and transition integrals as parameters.
Abstract: In this paper the general formalism of Kramers indicating the existence of superexchange interaction has been reduced, under simplifying assumptions, to the point where actual formulas for the interaction can be written down directly in terms of spin operators, with certain exchange and transition integrals as parameters. Two results of physical interest are the following: (a) superexchange must be expected to show the directional properties (as far as directional relations of interacting magnetic ions are concerned) of the orbitals in the outer shell of the non-magnetic connecting ions; and (b) the sign of the effective exchange integral depends upon the sign of the internal exchange coupling of an added electron on the magnetic ion.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations


Cites background from "Antiferromagnetism. Theory of Super..."

  • ...In the strong-coupling limit (U@t) at half filling (x50, i.e., one electron per Cu site in a 3dx22y2 orbital), the antiferromagnetic state (Anderson, 1950) results from the fact that, when nearest-neighbor spins are antiparallel to each other, the electrons gain kinetic energy by undergoing virtual…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the paramagnetic resonance spectrum of copper acetate is anomalous in that it resembles that of an ion of spin 1, and its intensity decreases as the temperature is lowered.
Abstract: The paramagnetic resonance spectrum of copper acetate is anomalous in that it resembles that of an ion of spin 1, and its intensity decreases as the temperature is lowered. The latter is correlated with the decreasing susceptibility found by Guha (1951). The following hypo­theses are suggested: (1) the crystalline field acting on each copper ion is similar to that in other salts such as the Tutton salts; (2) isolated pairs of copper ions interact strongly through exchange forces, each pair forming a lower singlet state and an upper triplet state, the latter only being paramagnetic. On this basis both the fine structure and the hyperfine structure of the spectrum have a simple explanation, and the theory also predicts a small initial split­ting of the triplet state of the same order as that found experimentally. The unit cell of the crystal contains two differently oriented pairs of ions, and, using an empirical value for the exchange parameter, fair agreement with the susceptibility measurements of Guha is obtained.

1,850 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered electron transfer between biological molecules in terms of a nonadiabatic multiphonon nonradiative decay process in a dense medium and derived an explicit, compact and useful expression for the electron transfer probability.
Abstract: This paper considers electron transfer between biological molecules in terms of a nonadiabatic multiphonon nonradiative decay process in a dense medium. This theoretical approach is analogous to an extended quantum mechanical theory of outer sphere electron transfer processes, incorporating the effects of both low‐frequency medium phonon modes and the high‐frequency molecular modes. An explicit, compact and useful expression for the electron transfer probability is derived, which is valid throughout the entire temperature range, exhibiting a continuous transition from temperature independent tunneling between nuclear potential surfaces at low temperatures to an activated rate expression at high temperatures. This result drastically differs at low temperatures from the common, semiclassical, Gaussian approximation for the transition probability. The experimental data of De Vault and Chance [Biophys. J. 6, 825 (1966)] on the temperature dependence of the rate of electron transfer from cytochrome to the chlorophyll reaction center in the photosynthetic bacterium Chromatium are properly accounted for in terms of the present theory.

1,285 citations

Journal ArticleDOI
22 Apr 1988-Science
TL;DR: Theoretical predictions of an "inverted region," where increasing the driving force of the reaction will decrease its rate, have begun to be experimentally confirmed and a predicted nonlinear dependence of ET rates on the polarity of the solvent has also been confirmed.
Abstract: Intramolecular long-distance electron transfer (EI) has been actively studied in recent years in order to test existing theories in a quantitative way and to provide the necessary constants for predicting ET rates from simple structural parameters. Theoretical predictions of an "inverted region," where increasing the driving force of the reaction will decrease its rate, have begun to be experimentally confirmed. A predicted nonlinear dependence of ET rates on the polarity of the solvent has also been confirmed. This work has implications for the design of efficient photochemical charge-separation devices. Other studies have been directed toward determining the distance dependence of ET reactions. Model studies on different series of compounds give similar distance dependences. When different stereochemical structures are compared, it becomes apparent that geometrical factors must be taken into account. Finally, the mechanism of coupling between donor and acceptor in weakly interacting systems has become of major importance. The theoretical and experimental evidence favors a model in which coupling is provided by the interaction with the orbitals of the intervening molecular fragments, although more experimental evidence is needed.

1,125 citations

Journal ArticleDOI
TL;DR: In this paper, the anomalous magnetic properties of perovskite-type mixed crystals La 1− x Sr x CoO 3− λ are interpreted in the light of this fact.

1,043 citations