scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Antineoplastic activity of free 4-nitrochalcone and encapsulated in poly(thioether-ester) nanoparticles obtained by thiol-ene polymerization in two human leukemia cell lines (Jurkat and K562)

TL;DR: Poly(thioether-ester) (PTEe), a polymer synthesized from renewable monomers, is a promising alternative for the encapsulation of antitumor drugs due to its biocompatibility and biodegradability and can be a new tool for the treatment of neoplastic cells.
About: This article is published in Journal of Drug Delivery Science and Technology.The article was published on 2021-10-22 and is currently open access. It has received 1 citations till now. The article focuses on the topics: Jurkat cells & K562 cells.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the synthesis of bio-based nanoparticles and some oncology active pharmaceutical ingredients available for anticancer application.
Abstract: The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
References
More filters
Journal ArticleDOI
TL;DR: A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation and is used to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.

50,114 citations

Journal ArticleDOI
TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Abstract: Chemotherapeutics are the most effective treatment for metastatic tumours. However, the ability of cancer cells to become simultaneously resistant to different drugs--a trait known as multidrug resistance--remains a significant impediment to successful chemotherapy. Three decades of multidrug-resistance research have identified a myriad of ways in which cancer cells can elude chemotherapy, and it has become apparent that resistance exists against every effective drug, even our newest agents. Therefore, the ability to predict and circumvent drug resistance is likely to improve chemotherapy.

5,105 citations

Journal Article
TL;DR: The surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition, are explored and the rational approaches in the design as well as the biological performance of such constructs are assessed.
Abstract: The rapid recognition of intravenously injected colloidal carriers, such as liposomes and polymeric nanospheres from the blood by Kupffer cells, has initiated a surge of development for "Kupffer cell-evading" or long-circulating particles. Such carriers have applications in vascular drug delivery and release, site-specific targeting (passive as well as active targeting), as well as transfusion medicine. In this article we have critically reviewed and assessed the rational approaches in the design as well as the biological performance of such constructs. For engineering and design of long-circulating carriers, we have taken a lead from nature. Here, we have explored the surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition. Our analysis is then centered where such strategies have been translated and fabricated to design a wide range of particulate carriers (e.g., nanospheres, liposomes, micelles, oil-in-water emulsions) with prolonged circulation and/or target specificity. With regard to the targeting issues, attention is particularly focused on the importance of physiological barriers and disease states.

3,413 citations

Journal ArticleDOI
Chunbai He1, Yiping Hu1, Lichen Yin1, Cui Tang1, Chunhua Yin1 
TL;DR: In vivo biodistribution suggested that NPs with slight negative charges and particle size of 150 nm were tended to accumulate in tumor more efficiently, and could serve as a guideline in the rational design of drug nanocarriers with maximized therapeutic efficacy and predictable in vivo properties.

2,069 citations