scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Antioxidant properties of resveratrol: A structure–activity insight

01 Jan 2010-Innovative Food Science and Emerging Technologies (Elsevier)-Vol. 11, Iss: 1, pp 210-218
TL;DR: In this paper, the antioxidant activity of resveratrol was investigated by employing various in vitro assays such as DPPH•, ABTS•, DMPD•+, O2•− and H2O2 scavenging activities, total antioxidant activity, reducing abilities, and Fe2+ chelating activities.
Abstract: Resveratrol, a natural product, is known to affect a broad range of intracellular mediators. In the present study, we clarified the antioxidant activity of resveratrol by employing various in vitro antioxidant assays such as DPPH•, ABTS•+, DMPD•+, O2•− and H2O2 scavenging activities, total antioxidant activity, reducing abilities, and Fe2+ chelating activities. Resveratrol inhibited 89.1% of the lipid peroxidation of linoleic acid emulsion at 30 µg/mL concentration. On the other hand, BHA, BHT, α-tocopherol, and trolox exhibited inhibitions of 83.3, 82.1, 68.1, and 81.3% against peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, resveratrol had effective DPPH•, ABTS•+, DMPD•+, O2•− and H2O2 scavenging activities, reducing power, and Fe2+ chelating activities. The present study found that resveratrol had effective in vitro antioxidant and radical scavenging activity. It can be used in pharmacological and food industry due to its antioxidant properties. Industrial relevance Antioxidants are often added to foods to prevent the radical chain reactions of oxidation and they act by inhibiting the initiation and propagation step leading to the termination of the reaction and delay the oxidation process. At the present time, the most commonly used antioxidants are BHA, BHT, propylgallate and tert-butyl hydroquinone. Besides that BHA and BHT are restricted by legislative rules because of doubts over their toxic and carcinogenic effects. Therefore, there is a growing interest on natural and safer antioxidants in food applications, and a growing trend in consumer preferences for natural antioxidants, all of which has given more impetus to explore natural sources of antioxidants. A variety of foods and beverages of vegetable origin contain several nonflavonoid classes of phenolic compounds synthesized by plants. Among them, resveratrol has been identified as the major active compound of stilbene phytoalexins and is presumed to be beneficial for human health. Resveratrol is naturally occurring in the fruits and leaves of edible plants, peanuts, mulberries, grapes and red wine. Resveratrol is currently in the limelight all over the world due to their beneficial effects on the human body. Resveratrol can be used for minimizing or preventing lipid oxidation in pharmaceutical products, retarding the formation of toxic oxidation products, maintaining nutritional quality and prolonging the shelf life of food products and pharmaceuticals instead of BHA and BHT and other antioxidant compounds because of their safer usage.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of phenolic and polyphenolic compounds can be found in this article, which summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology.

1,800 citations

Journal ArticleDOI
TL;DR: The most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented, and the general chemistry underlying the assays in the present paper was clarified.
Abstract: Recently, there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented. Also, the general chemistry underlying the assays in the present paper was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+–Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical scavenging, superoxide anion radical (O 2 ·− ) scavenging, hydrogen peroxide (H2O2) scavenging, hydroxyl radical (OH·) scavenging, singlet oxygen (1O2) quenching assay and nitric oxide radical (NO·) scavenging assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods which are currently used for detection of antioxidant properties food components. This review consists of two main sections. The first section is devoted to main components in the foodstuffs and beverages. The second general section is some definitions of the main antioxidant methods commonly used for determination of antioxidant activity of components in the foodstuffs and beverages. In addition, there are given some chemical and kinetic basis and technical details of the used methods.

1,278 citations


Cites background from "Antioxidant properties of resveratr..."

  • ...Hence, there is a growing interest in natural and safer antioxidants for food applications, and a growing trend in consumer preferences towards natural antioxidants, all of which have given impetus to the attempts to explore natural sources of antioxidants (Gülçin 2006b, 2007, 2010)....

    [...]

  • ...…2007b, 2008b), food constituents (Gülçin et al. 2006c, d, 2011c; Ak and Gülçin 2008), plant extracts (Elmastas et al. 2006b; Büyükokuroglu and Gülçin 2009; Serbetçi Tohma and Gülçin 2010) and the other samples such as synthesized compounds (Talaz et al. 2009; Balaydın et al. 2010)....

    [...]

  • ...It was reported that food constituent has a marked capacity for iron binding, suggesting that its main action as a peroxidation inhibitor may be related to its iron-binding capacity (Ak and Gülçin 2008; Gülçin 2010)....

    [...]

  • ...Therefore, it is considered an easy and useful spectrophotometric method with regard to screening/measuring the radical scavenging capacity of pure compounds (Gülçin et al. 2004d, 2007b, 2008b), food constituents (Gülçin et al. 2006c, d, 2011c; Ak and Gülçin 2008), plant extracts (Elmastas et al. 2006b; Büyükokuroglu and Gülçin 2009; Serbetçi Tohma and Gülçin 2010) and the other samples such as synthesized compounds (Talaz et al. 2009; Balaydın et al. 2010)....

    [...]

  • ...ROS are continuously produced during normal physiological events and can easily initiate the peroxidation of membrane lipids, leading to the accumulation of lipid peroxides (Elmastaş et al. 2006; Gülçin 2010)....

    [...]

Journal ArticleDOI
TL;DR: Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes as discussed by the authors, and many studies evaluating the antioxidant activity of various samples of research interest have been conducted.
Abstract: Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant-derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies evaluating the antioxidant activity of various samples of research interest using different methods in food and human health have been conducted. These methods are classified, described, and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and for chain-breaking antioxidants, while different specific studies are needed for preventive antioxidants. For this purpose, the most common methods used in vitro determination of antioxidant capacity of food constituents were examined. Also, a selection of chemical testing methods was critically reviewed and highlighted. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw extracts. The effect and influence of the reaction medium on the performance of antioxidants are also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant methods for the food, nutraceuticals, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+-Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical (ROO·), superoxide radical anion (O2·-), hydrogen peroxide (H2O2) scavenging assay, hydroxyl radical (OH·) scavenging assay, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods, which are currently used for the detection of antioxidant properties of food components. This review consists of two main sections. The first section is devoted to the main components in the food and pharmaceutical applications. The second general section comprises some definitions of the main antioxidant methods commonly used for the determination of the antioxidant activity of components. In addition, some chemical, mechanistic and kinetic basis, and technical details of the used methods are given.

677 citations

Journal ArticleDOI
TL;DR: This review includes various in vitro, in vivo and in silico studies providing the mode of action, radical scavenging activity, ability to inhibit lipid peroxidation, maintenance of endogenous defense systems and metal ion chelation by this triphenolic molecule, along with a comprehensive overview of factors responsible for its high antioxidant activity.
Abstract: Oxidative stress, a result of an overproduction and accumulation of free radicals, is the leading cause of several degenerative diseases such as cancer, atherosclerosis, cardiovascular diseases, ageing and inflammatory diseases. Polyphenols form an important class of naturally occurring antioxidants, having innumerable biological activities such as anticancer, antifungal, antibacterial, antiviral, antiulcer and anticholesterol, to name a few. Among various polyphenols, gallic acid (3,4,5-trihydroxybenzoic acid), a naturally occurring low molecular weight triphenolic compound, has emerged as a strong antioxidant and an efficient apoptosis inducing agent. Starting from the bioavailability and the biosynthetic pathway of gallic acid, this review includes various in vitro, in vivo and in silico studies providing the mode of action, radical scavenging activity, ability to inhibit lipid peroxidation, maintenance of endogenous defense systems and metal ion chelation by this triphenolic molecule, along with a comprehensive overview of factors responsible for its high antioxidant activity. Gallic acid derivatives have also been found in a number of phytomedicines with diverse biological and pharmacological activities, including radical scavenging, interfering with the cell signaling pathways and apoptosis of cancer cells. The diverse range of applications of this simple polyphenol is due to a fine amalgam between its antioxidant and prooxidant potential. The existing literature on this dual behavior of gallic acid and its derivatives is reviewed here. This is followed by an account of their potential clinical and industrial applications.

621 citations

Journal ArticleDOI
TL;DR: This review summarized current data on resveratrol pharmacological effects and confirmed its anticancer properties, as well as other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective.
Abstract: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) belongs to polyphenols’ stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes’ skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.

559 citations

References
More filters
Journal ArticleDOI
TL;DR: A method for the screening of antioxidant activity is reported as a decolorization assay applicable to both lipophilic and hydrophilic antioxidants, including flavonoids, hydroxycinnamates, carotenoids, and plasma antioxidants.

18,580 citations

Journal ArticleDOI
TL;DR: The BGA team discusses the development of G-15, which aims to address the challenge of “superbugs” in the high-acid environment.
Abstract: グルコサミン塩酸塩を遊離形にし, 37℃インキュベーターで0日から30日間放置褐変した褐変グルコサミン (BGA) の抗酸化性, 還元力, 褐変度, アミノ糖の残存量, pH, 水分量, 全窒素量を, 放置0日から5日間は毎日, 以後5日間の間隔で30日間測定した。一方, 0, 15, 30日間放置褐変したBGAをセファデックスG-15で分画し, 抗酸化性, 還元力, 褐変度, pHについて測定して, 次のような結果を得た。1) 遊離グルコサミンは, 3日間放置後より白色粉末状から褐色ペースト状に急激な変化を示した。2) 最も強い抗酸化性は, 25日間と30日間放置褐変したBGAで認められた。3) BGAのリノール酸に対する抗酸化性は, 褐変度と深い関係を示した。4) 長く放置褐変したBGAは, 分子量が比較的高い領域の褐変生成物質と, 比較的低い領域の褐変生成物質に分画された。5) 長く放置褐変したBGAでは, 高分子の褐変生成物質のフラクションと, 低分子の褐変生成物質のフラクションの中間フラクションに抗酸化性を認めた。

6,976 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that mulberry leaves contain at least four flavonoids, two of which are rutin and quercetin, and that the scavenging effects of most mulberry extracts were greater than those of rutins (52.0%) at a concentration of 5μg ml −1.

6,451 citations

Book ChapterDOI
TL;DR: The chapter discusses the metabolism of transition metals, such as iron and copper, and the chelation therapy that is an approach to site-specific antioxidant protection.
Abstract: Publisher Summary This chapter discusses the role of free radicals and catalytic metal ions in human disease. The importance of transition metal ions in mediating oxidant damage naturally leads to the question as to what forms of such ions might be available to catalyze radical reactions in vivo . The chapter discusses the metabolism of transition metals, such as iron and copper. It also discusses the chelation therapy that is an approach to site-specific antioxidant protection. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. A wide range of techniques is available to measure the rate of this process, but none is applicable to all circumstances. The two most popular are the measurement of diene conjugation and the thiobarbituric acid (TBA) test, but they are both subject to pitfalls, especially when applied to human samples. The chapter also discusses the essential principles of the peroxidation process. When discussing lipid peroxidation, it is essential to use clear terminology for the sequence of events involved; an imprecise use of terms such as initiation has caused considerable confusion in the literature. In a completely peroxide-free lipid system, first chain initiation of a peroxidation sequence in a membrane or polyunsaturated fatty acid refers to the attack of any species that has sufficient reactivity to abstract a hydrogen atom from a methylene group.

5,033 citations

Journal ArticleDOI
TL;DR: 5-Aminosalicylate reacts promptly with DPPH, suggesting a potent radical scavenger activity and was found to be the most active in inhibiting Fe2+/ascorbate-induced lipid peroxidation, suggesting an antioxidant activity of chain-breaking type.

2,497 citations