scispace - formally typeset
Open AccessJournal ArticleDOI

antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

Reads0
Chats0
TLDR
AntiSMASH as mentioned in this paper is a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.org.
Abstract
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline

TL;DR: AntiSMASH 5 adds detection rules for clusters encoding the biosynthesis of acyl-amino acids, β-lactones, fungal RiPPs, RaS-Ri PPs, polybrominated diphenyl ethers, C-nucleosides, PPY-like ketones and lipolanthines and provides more detailed predictions for type II polyketide synthase-encoding gene clusters.
Journal ArticleDOI

antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification.

TL;DR: The thoroughly updated antiSMASH version 4 is presented, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, and several usability features have been updated and improved.
Journal ArticleDOI

antiSMASH 6.0: improving cluster detection and comparison capabilities.

TL;DR: antiSMASH as mentioned in this paper is the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in bacteria and fungi, and it is updated version 6 of antiSMASH.
Journal ArticleDOI

Natural product discovery: past, present, and future

TL;DR: Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development.
Journal ArticleDOI

Minimum Information about a Biosynthetic Gene cluster.

Marnix H. Medema, +164 more
TL;DR: This work proposes the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard, to facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters.
References
More filters
Journal ArticleDOI

Geneious Basic

TL;DR: Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types.
Journal ArticleDOI

BLAST+: architecture and applications.

TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Journal ArticleDOI

Pfam: the protein families database.

TL;DR: Pfam as discussed by the authors is a widely used database of protein families, containing 14 831 manually curated entries in the current version, version 27.0, and has been updated several times since 2012.
Journal ArticleDOI

Fast and sensitive protein alignment using DIAMOND

TL;DR: DIAMOND is introduced, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.
Journal ArticleDOI

Natural Products as Sources of New Drugs over the Last 25 Years

TL;DR: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003 and is able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame.
Related Papers (5)