scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Antiviral peptides against Coronaviridae family: A review.

04 Mar 2021-Peptides (Elsevier)-Vol. 139, pp 170526-170526
TL;DR: In this paper, the authors made an effort to compile and review the antiviral peptides with activity against Coronaviridae family viruses, including binding/attachment inhibitors, fusion and entry inhibitors, viral enzyme inhibitors, replication inhibitors, and peptide with direct and indirect effects on the viruses.
About: This article is published in Peptides.The article was published on 2021-03-04 and is currently open access. It has received 25 citations till now. The article focuses on the topics: Coronaviridae & Middle East respiratory syndrome coronavirus.
Citations
More filters
Journal ArticleDOI
TL;DR: The major variant of concerns (VOCs) have shared mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins, mostly on the S1 unit and resulted in higher transmissibility rate and affect viral virulence and clinical outcome as discussed by the authors.
Abstract: The major variant of concerns (VOCs) have shared mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins, mostly on the S1 unit and resulted in higher transmissibility rate and affect viral virulence and clinical outcome. The spike protein mutations and other non-structural protein mutations in the VOCs may lead to escape approved vaccinations in certain extend. We will discuss these VOC mutations and discuss the need for combination therapeutic strategies targeting viral cycle and immune host responses.

156 citations

Journal ArticleDOI
TL;DR: In this article , a peptide GSRY was predicted to have better physicochemical properties, and the value of '-C DOCKER interaction energy' between peptide gSRY and SARS-CoV-2 main protease (Mpro) was 80.8505 kcal/mol.
Abstract: COVID-19 is a global health emergency that causes serious concerns. A global effort is underway to identify drugs for the treatment of COVID-19. One possible solution to the present problem is to develop drugs that can inhibit SARS-CoV-2 main protease (Mpro), a coronavirus protein that been considered as one among many drug targets. In this work, lactoferrin from Bos taurus L. was in silico hydrolyzed. The bioactivity, water solubility, and ADMET properties of the generated peptides were predicted using various online tools. The molecular interactions between Mpro and the peptides were studied using molecular docking and molecular dynamic simulation. The results demonstrated that peptide GSRY was predicted to have better physicochemical properties, and the value of '-C DOCKER interaction energy' between peptide GSRY and Mpro was 80.8505 kcal/mol. The interaction between the peptide GSRY and the native ligand N3 co-crystallized with Mpro had overlapped amino acids, i.e., HIS163, GlY143, GLU166, GLN189 and MET165. Molecular dynamic simulation revealed that Mpro/GSRY complexes were stable. Collectively, the peptide GSRY may be a potential candidate drug against Mpro of SARS-CoV-2.

17 citations

Journal ArticleDOI
TL;DR: In this paper, a peptide GSRY was predicted to have better physicochemical properties, and the value of '-C DOCKER interaction energy' between peptide gSRY and SARS-CoV-2 main protease (Mpro) was 80.8505 kcal/mol.
Abstract: COVID-19 is a global health emergency that causes serious concerns. A global effort is underway to identify drugs for the treatment of COVID-19. One possible solution to the present problem is to develop drugs that can inhibit SARS-CoV-2 main protease (Mpro), a coronavirus protein that been considered as one among many drug targets. In this work, lactoferrin from Bos taurus L. was in silico hydrolyzed. The bioactivity, water solubility, and ADMET properties of the generated peptides were predicted using various online tools. The molecular interactions between Mpro and the peptides were studied using molecular docking and molecular dynamic simulation. The results demonstrated that peptide GSRY was predicted to have better physicochemical properties, and the value of '-C DOCKER interaction energy' between peptide GSRY and Mpro was 80.8505 kcal/mol. The interaction between the peptide GSRY and the native ligand N3 co-crystallized with Mpro had overlapped amino acids, i.e., HIS163, GlY143, GLU166, GLN189 and MET165. Molecular dynamic simulation revealed that Mpro/GSRY complexes were stable. Collectively, the peptide GSRY may be a potential candidate drug against Mpro of SARS-CoV-2.

16 citations

Journal ArticleDOI
01 Apr 2022-Cells
TL;DR: The efficacy of a new tetravalent neutralizing antibody targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells are demonstrated, providing proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.
Abstract: The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment. The infection begins in the proximal airways, namely the alveolar type 2 (AT2) cells of the distal lung, which express both ACE2 and DPP4 receptors. Thus, to evaluate the efficacy of both approaches, we developed three-dimensional (3D) complex lung organoid structures (hLORGs) derived from human-induced pluripotent stem cells (iPSCs) and resembling the in vivo organ. Afterward, hLORGs were infected by different SARS-CoV-2 S pseudovirus variants and treated by the Ab15033-7 or DPP4 peptide. Using both approaches, we observed a significant reduction of viral entry and a modulation of the expression of genes implicated in innate immunity and inflammatory response. These data demonstrate the efficacy of such approaches in strongly reducing the infection efficiency in vitro and, importantly, provide proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.

16 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide a brief outlook regarding the importance of in silico tools in managing different aspects of COVID-19 pandemic infection and how these methods have been helpful to biomedical researchers.

14 citations

References
More filters
Journal ArticleDOI
13 Mar 2020-Science
TL;DR: The authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor, and test several published SARS-CoV RBD-specific monoclonal antibodies found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs.
Abstract: The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.

7,324 citations

Journal ArticleDOI
TL;DR: The viral factors that enabled the emergence of diseases such as severe acute respiratory syndrome and Middle East respiratory syndrome are explored and the diversity and potential of bat-borne coronaviruses are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs. Coronaviruses have a broad host range and distribution, and some highly pathogenic lineages have spilled over to humans and animals. Here, Cui, Li and Shi explore the viral factors that enabled the emergence of diseases such as severe acute respiratory syndrome and Middle East respiratory syndrome.

3,970 citations

Journal ArticleDOI
TL;DR: Using biological assays, the HR2 peptide was shown to be a potent inhibitor of virus entry into the cell, as well as of cell-cell fusion.
Abstract: Coronavirus entry is mediated by the viral spike (S) glycoprotein. The 180-kDa oligomeric S protein of the murine coronavirus mouse hepatitis virus strain A59 is posttranslationally cleaved into an S1 receptor binding unit and an S2 membrane fusion unit. The latter is thought to contain an internal fusion peptide and has two 4,3 hydrophobic (heptad) repeat regions designated HR1 and HR2. HR2 is located close to the membrane anchor, and HR1 is some 170 amino acids (aa) upstream of it. Heptad repeat (HR) regions are found in fusion proteins of many different viruses and form an important characteristic of class I viral fusion proteins. We investigated the role of these regions in coronavirus membrane fusion. Peptides HR1 (96 aa) and HR2 (39 aa), corresponding to the HR1 and HR2 regions, were produced in Escherichia coli. When mixed together, the two peptides were found to assemble into an extremely stable oligomeric complex. Both on their own and within the complex, the peptides were highly alpha helical. Electron microscopic analysis of the complex revealed a rod-like structure approximately 14.5 nm in length. Limited proteolysis in combination with mass spectrometry indicated that HR1 and HR2 occur in the complex in an antiparallel fashion. In the native protein, such a conformation would bring the proposed fusion peptide, located in the N-terminal domain of HR1, and the transmembrane anchor into close proximity. Using biological assays, the HR2 peptide was shown to be a potent inhibitor of virus entry into the cell, as well as of cell-cell fusion. Both biochemical and functional data show that the coronavirus spike protein is a class I viral fusion protein.

1,283 citations

Journal ArticleDOI
TL;DR: An overview of the biological role, classification, and mode of action of AMPs is provided, the opportunities and challenges to develop these peptides for clinical applications are discussed, and the innovative formulation strategies for application are reviewed.
Abstract: Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.

1,159 citations

Journal ArticleDOI
TL;DR: EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively.
Abstract: The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be defined. Therefore, we herein established a SARS-CoV-2 spike (S) protein-mediated cell–cell fusion assay and found that SARS-CoV-2 showed a superior plasma membrane fusion capacity compared to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in the SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with the HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted the HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, and potently inhibited the replication of 5 live human coronaviruses examined, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by the currently circulating SARS-CoV-2 and other emerging SARSr-CoVs.

1,026 citations