scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Anyons in an exactly solved model and beyond

01 Jan 2006-Annals of Physics (Elsevier)-Vol. 321, Iss: 1, pp 2-111
TL;DR: In this article, a spin-1/2 system on a honeycomb lattice is studied, where the interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength.
About: This article is published in Annals of Physics.The article was published on 2006-01-01 and is currently open access. It has received 4032 citations till now. The article focuses on the topics: Anyon & Topological quantum computer.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

4,457 citations

12 Jun 2007
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject using the nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {it Non-Abelian anyons}, meaning that they obey {it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

3,132 citations

Journal ArticleDOI
10 Mar 2010-Nature
TL;DR: This exotic behaviour of frustrated magnets is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.
Abstract: Frustrated magnets are materials in which localized magnetic moments, or spins, interact through competing exchange interactions that cannot be simultaneously satisfied, giving rise to a large degeneracy of the system ground state. Under certain conditions, this can lead to the formation of fluid-like states of matter, so-called spin liquids, in which the constituent spins are highly correlated but still fluctuate strongly down to a temperature of absolute zero. The fluctuations of the spins in a spin liquid can be classical or quantum and show remarkable collective phenomena such as emergent gauge fields and fractional particle excitations. This exotic behaviour is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.

3,081 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically studied topological phases of insulators and superconductors in three dimensions and showed that there exist topologically nontrivial (3D) topologically nonsmooth topological insulators in five out of ten symmetry classes introduced in the context of random matrix theory.
Abstract: We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced ${\mathbb{Z}}_{2}$ topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral $({p}_{x}\ifmmode\pm\else\textpm\fi{}i{p}_{y})$-wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to ``weak pairing'') and topologically trivial (analogous to ``strong pairing'') 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.

2,459 citations

References
More filters
Book
01 Jan 1971
TL;DR: In this article, the authors present a table of abstractions for categories, including Axioms for Categories, Functors, Natural Transformations, and Adjoints for Preorders.
Abstract: I. Categories, Functors and Natural Transformations.- 1. Axioms for Categories.- 2. Categories.- 3. Functors.- 4. Natural Transformations.- 5. Monics, Epis, and Zeros.- 6. Foundations.- 7. Large Categories.- 8. Hom-sets.- II. Constructions on Categories.- 1. Duality.- 2. Contravariance and Opposites.- 3. Products of Categories.- 4. Functor Categories.- 5. The Category of All Categories.- 6. Comma Categories.- 7. Graphs and Free Categories.- 8. Quotient Categories.- III. Universals and Limits.- 1. Universal Arrows.- 2. The Yoneda Lemma.- 3. Coproducts and Colimits.- 4. Products and Limits.- 5. Categories with Finite Products.- 6. Groups in Categories.- IV. Adjoints.- 1. Adjunctions.- 2. Examples of Adjoints.- 3. Reflective Subcategories.- 4. Equivalence of Categories.- 5. Adjoints for Preorders.- 6. Cartesian Closed Categories.- 7. Transformations of Adjoints.- 8. Composition of Adjoints.- V. Limits.- 1. Creation of Limits.- 2. Limits by Products and Equalizers.- 3. Limits with Parameters.- 4. Preservation of Limits.- 5. Adjoints on Limits.- 6. Freyd's Adjoint Functor Theorem.- 7. Subobjects and Generators.- 8. The Special Adjoint Functor Theorem.- 9. Adjoints in Topology.- VI. Monads and Algebras.- 1. Monads in a Category.- 2. Algebras for a Monad.- 3. The Comparison with Algebras.- 4. Words and Free Semigroups.- 5. Free Algebras for a Monad.- 6. Split Coequalizers.- 7. Beck's Theorem.- 8. Algebras are T-algebras.- 9. Compact Hausdorff Spaces.- VII. Monoids.- 1. Monoidal Categories.- 2. Coherence.- 3. Monoids.- 4. Actions.- 5. The Simplicial Category.- 6. Monads and Homology.- 7. Closed Categories.- 8. Compactly Generated Spaces.- 9. Loops and Suspensions.- VIII. Abelian Categories.- 1. Kernels and Cokernels.- 2. Additive Categories.- 3. Abelian Categories.- 4. Diagram Lemmas.- IX. Special Limits.- 1. Filtered Limits.- 2. Interchange of Limits.- 3. Final Functors.- 4. Diagonal Naturality.- 5. Ends.- 6. Coends.- 7. Ends with Parameters.- 8. Iterated Ends and Limits.- X. Kan Extensions.- 1. Adjoints and Limits.- 2. Weak Universality.- 3. The Kan Extension.- 4. Kan Extensions as Coends.- 5. Pointwise Kan Extensions.- 6. Density.- 7. All Concepts are Kan Extensions.- Table of Terminology.

9,254 citations

Book
03 Dec 2001

6,660 citations

Book
04 Nov 1994
TL;DR: In this paper, the authors introduce the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions and present the quantum groups attached to SL2 as well as the basic concepts of the Hopf algebras.
Abstract: Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

5,966 citations


"Anyons in an exactly solved model a..." refers background in this paper

  • ...) The presently available resources may be divided into three categories: the original field-theoretic papers where the relevant mathematical structure was discovered [4,5], local field theory papers [6,7] (see Haag s book [78] for a general reference on this subject), and purely mathematical expositions [68,79,80]....

    [...]

  • ...Examples 3 and 1 (with M = G) can be combined in what is called representation theory of Drinfeld s quantum double [85,80]....

    [...]

  • ...In the notation used in [68,79,80], cups and caps are not decorated but each particle has a fictitious degree of freedom: it is considered as either a going up or a going down....

    [...]

  • ...[80], Lemma XI....

    [...]

Journal ArticleDOI
06 Mar 1987-Science
TL;DR: The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties.
Abstract: The oxide superconductors, particularly those recently discovered that are based on La2CuO4have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought “resonating-valence-bond” state or “quantum spin liquid” hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.

5,409 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that 2+1 dimensional quantum Yang-Mills theory with an action consisting purely of the Chern-Simons term is exactly soluble and gave a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms.
Abstract: It is shown that 2+1 dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms. In this version, the Jones polynomial can be generalized fromS 3 to arbitrary three manifolds, giving invariants of three manifolds that are computable from a surgery presentation. These results shed a surprising new light on conformal field theory in 1+1 dimensions.

5,093 citations


"Anyons in an exactly solved model a..." refers background in this paper

  • ...Witten’s work on quantum Chern-Simons theory [ 5 ] was also very influential....

    [...]