scispace - formally typeset
Search or ask a question
Journal ArticleDOI

APOE ε4 increases risk for dementia in pure synucleinopathies.

TL;DR: The elevated ϵ4 frequency in the pDLB and PDD groups, in which the overall brain neuritic plaque burden was low, indicates that apoE might contribute to neurodegeneration through mechanisms unrelated to amyloid processing.
Abstract: Lewy body disease (LBD) en-compasses a spectrum of clinicopathologic entities that include Parkinson disease (PD), PD with dementia (PDD), and dementia with Lewy bodies (DLB). Dementia with Lewy bodies and PDD are differentiated from one another based on clinical criteria. Dementia with Lewy bodies is diagnosed when dementia occurs before or concurrently with parkinsonism, whereas in PDD, parkinsonism precedes dementia by at least 12 months.1 Lewy body disease neuropathologic changes (NCs) include classic histologic inclusions (Lewy bodies) and α-synuclein immunopositive neuronal inclusions and processes (Lewy neurites) in partially overlapping regions of the brain. However, the pathologic classification of DLB is complex because some cases show LBDNCs with no or low levels of Alzheimer disease (AD) NCs, which we refer to as pure DLB (pDLB), while many other cases show LBDNCs with coexistent high levels of ADNCs (LBDAD). Importantly, the pathophysiologic relationship between LBD-AD, pDLB, and PDD has not been delineated, and whether these disorders share common risk factors remains unclear. Humans are unlike other mammals in that we possess 3 common alleles of the apolipoprotein E (APOE) gene that are determined by 2 single nucleotide polymorphisms located in exon 4 at positions 3937 (T/C; rs429358) and 4075 (C/T; rs7412). The corresponding apoE isoforms (299 amino acids) differ at amino acid positions 112 (Cys for apoE2 and apoE3; Arg for apoE4) and 158 (Cys for apoE2; Arg for apoE3 and apoE4), and these isoforms have different functional and biochemical properties.2 The APOE e4 allele is a well-established risk factor for both early-onset and late-onset AD.3,4 We and others have reported an association between e4 and LBD-AD,5–7 but it is unclear whether e4 is a risk factor for pDLB or PDD because interpretations of existing data are limited by methodologic differences between studies. In particular, studies of DLB have often failed to assess for the presence of coexistent ADNCs, thus they have been unable to differentiate LBD-AD from pDLB.8–10 Therefore, it is possible that all genetic risk for DLB associated with the APOE e4 allele is related to its frequent comorbidity with ADNCs and is unrelated to LBDNCs. Furthermore, no studies have directly compared genetic risk factors between pDLB and PDD. To address this gap in knowledge, we genotyped APOE in a clinically and neuropathologically well-characterized sample of control participants and subjects with AD, LBD-AD, pDLB, and PDD.
Citations
More filters
Journal ArticleDOI
TL;DR: The spread of fibrillar α-synuclein pathology from the brainstem to limbic and neocortical structures seems to be the strongest neuropathological correlate of emerging dementia in Parkinson's disease.
Abstract: Dementia is increasingly being recognized in cases of Parkinson's disease (PD); such cases are termed PD dementia (PDD). The spread of fibrillar α-synuclein (α-syn) pathology from the brainstem to limbic and neocortical structures seems to be the strongest neuropathological correlate of emerging dementia in PD. In addition, up to 50% of patients with PDD also develop sufficient numbers of amyloid-β plaques and tau-containing neurofibrillary tangles for a secondary diagnosis of Alzheimer's disease, and these pathologies may act synergistically with α-syn pathology to confer a worse prognosis. An understanding of the relationships between these three distinct pathologies and their resultant clinical phenotypes is crucial for the development of effective disease-modifying treatments for PD and PDD.

641 citations

Journal ArticleDOI
Yu Yamazaki1, Na Zhao1, Thomas R. Caulfield1, Chia Chen Liu1, Guojun Bu1 
TL;DR: Increasing evidence suggests that the effect of APOE*ε4 on AD risk is exerted through inhibition of amyloid-β (Aβ) clearance and promotion of Aβ aggregation, although the relevance of this observation to AD pathogenesis requires further investigation.
Abstract: Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*e4 allele conferring an increased risk and the APOE*e2 allele conferring a decreased risk relative to the common APOE*e3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*e4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.

589 citations

Journal ArticleDOI
TL;DR: Clinicians can diagnose the syndromes of dementia (major neurocognitive disorder) and mild cognitive impairment (mild cognitive impairment) based on history, examination, and appropriate objective assessments, using standard criteria such as Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.

535 citations

Journal ArticleDOI
TL;DR: A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system.
Abstract: Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

415 citations

Journal ArticleDOI
TL;DR: The most pertinent progress from the past 10 years is summarized, outlining some of the challenges for the future, which will require refinement of diagnosis and clarification of the pathogenesis, leading to disease-modifying treatments.

395 citations

References
More filters
Journal ArticleDOI
TL;DR: The criteria proposed are intended to serve as a guide for the diagnosis of probable, possible, and definite Alzheimer's disease; these criteria will be revised as more definitive information becomes available.
Abstract: Clinical criteria for the diagnosis of Alzheimer's disease include insidious onset and progressive impairment of memory and other cognitive functions. There are no motor, sensory, or coordination deficits early in the disease. The diagnosis cannot be determined by laboratory tests. These tests are important primarily in identifying other possible causes of dementia that must be excluded before the diagnosis of Alzheimer's disease may be made with confidence. Neuropsychological tests provide confirmatory evidence of the diagnosis of dementia and help to assess the course and response to therapy. The criteria proposed are intended to serve as a guide for the diagnosis of probable, possible, and definite Alzheimer's disease; these criteria will be revised as more definitive information become available.

26,847 citations

Journal ArticleDOI
TL;DR: The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations, permitting the differentiation of six stages.
Abstract: Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.

13,699 citations

Journal ArticleDOI
TL;DR: The Neuropathology Task Force of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) has developed a practical and standardized neuropathology protocol for the postmortem assessment of dementia and control subjects, which provides neuropathologic definitions of such terms as “definite Alzheimer's disease” (AD), “probable AD,” “possible AD” and “normal brain” to indicate levels of diagnostic certainty.
Abstract: The Neuropathology Task Force of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) has developed a practical and standardized neuropathology protocol for the postmortem assessment of dementia and control subjects. The protocol provides neuropathologic definitions of such terms as "definite Alzheimer's disease" (AD), "probable AD," "possible AD," and "normal brain" to indicate levels of diagnostic certainty, reduce subjective interpretation, and assure common language. To pretest the protocol, neuropathologists from 15 participating centers entered information on autopsy brains from 142 demented patients clinically diagnosed as probable AD and on eight nondemented patients. Eighty-four percent of the dementia cases fulfilled CERAD neuropathologic criteria for definite AD. As increasingly large numbers of prospectively studied dementia and control subjects are autopsied, the CERAD neuropathology protocol will help to refine diagnostic criteria, assess overlapping pathology, and lead to a better understanding of early subclinical changes of AD and normal aging.

4,837 citations

Journal ArticleDOI
TL;DR: The dementia with Lewy bodies (DLB) Consortium has revised criteria for the clinical and pathologic diagnosis of DLB incorporating new information about the core clinical features and suggesting improved methods to assess them as mentioned in this paper.
Abstract: The dementia with Lewy bodies (DLB) Consortium has revised criteria for the clinical and pathologic diagnosis of DLB incorporating new information about the core clinical features and suggesting improved methods to assess them. REM sleep behavior disorder, severe neuroleptic sensitivity, and reduced striatal dopamine transporter activity on functional neuroimaging are given greater diagnostic weighting as features suggestive of a DLB diagnosis. The 1-year rule distinguishing between DLB and Parkinson disease with dementia may be difficult to apply in clinical settings and in such cases the term most appropriate to each individual patient should be used. Generic terms such as Lewy body (LB) disease are often helpful. The authors propose a new scheme for the pathologic assessment of LBs and Lewy neurites (LN) using alpha-synuclein immunohistochemistry and semiquantitative grading of lesion density, with the pattern of regional involvement being more important than total LB count. The new criteria take into account both Lewy-related and Alzheimer disease (AD)-type pathology to allocate a probability that these are associated with the clinical DLB syndrome. Finally, the authors suggest patient management guidelines including the need for accurate diagnosis, a target symptom approach, and use of appropriate outcome measures. There is limited evidence about specific interventions but available data suggest only a partial response of motor symptoms to levodopa: severe sensitivity to typical and atypical antipsychotics in ∼50%, and improvements in attention, visual hallucinations, and sleep disorders with cholinesterase inhibitors.

4,258 citations

Journal ArticleDOI
22 Oct 1997-JAMA
TL;DR: The APOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women.
Abstract: Objective. —To examine more closely the association between apolipoprotein E (APOE) genotype and Alzheimer disease (AD) by age and sex in populations of various ethnic and racial denominations. Data Sources. —Forty research teams contributed data onAPOEgenotype, sex, age at disease onset, and ethnic background for 5930 patients who met criteria for probable or definite AD and 8607 controls without dementia who were recruited from clinical, community, and brain bank sources. Main Outcome Measures. —Odds ratios (ORs) and 95% confidence intervals (Cls) for AD, adjusted for age and study and stratified by major ethnic group (Caucasian, African American, Hispanic, and Japanese) and source, were computed forAPOEgenotypes ∈2/∈2,∈2/∈3,∈2/∈4,∈3/∈4 and ∈4/∈4 relative to the ∈3/∈3 group. The influence of age and sex on the OR for each genotype was assessed using logistic regression procedures. Results. —Among Caucasian subjects from clinic- or autopsy-based studies, the risk of AD was significantly increased for people with genotypes ∈2/∈4 (OR=2.6, 95% Cl=1.6-4.0), ∈3/∈4 (OR=3.2, 95% Cl=2.8-3.8), and ∈4/∈4 (OR=14.9, 95% CI=10.8-20.6); whereas, the ORs were decreased for people with genotypes ∈2/∈2 (OR=0.6, 95% Cl=0.2-2.0) and ∈2/∈3 (OR=0.6, 95% Cl=0.5-0.8). TheAPOE∈4-AD association was weaker among African Americans and Hispanics, but there was significant heterogeneity in ORs among studies of African Americans (P Conclusions. —TheAPOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women. The association betweenAPOE∈4 and AD in African Americans requires clarification, and the attenuated effect ofAPOE∈4 in Hispanics should be investigated further.

3,825 citations

Related Papers (5)
Ian G. McKeith, Bradley F. Boeve, Dennis W. Dickson, Glenda M. Halliday, John-Paul Taylor, Daniel Weintraub, Dag Aarsland, Dag Aarsland, James E. Galvin, Johannes Attems, Johannes Attems, Clive Ballard, Clive Ballard, Ashley Bayston, Ashley Bayston, Thomas G. Beach, Thomas G. Beach, Frédéric Blanc, Nicolaas Bohnen, Nicolaas Bohnen, Nicolaas Bohnen, Laura Bonanni, Laura Bonanni, Jose Bras, Jose Bras, Patrik Brundin, Patrik Brundin, David J. Burn, David J. Burn, Alice Chen-Plotkin, John E. Duda, Omar M. A. El-Agnaf, Howard Feldman, Tanis J. Ferman, Dominic Ffytche, Hiroshige Fujishiro, Douglas Galasko, Jennifer G. Goldman, Stephen N. Gomperts, Neill R. Graff-Radford, Lawrence S. Honig, Lawrence S. Honig, Alex Iranzo, Alex Iranzo, Alex Iranzo, Kejal Kantarci, Daniel I. Kaufer, Walter Kukull, Virginia M.Y. Lee, James B. Leverenz, James B. Leverenz, Simon J.G. Lewis, Carol F. Lippa, Carol F. Lippa, Angela Lunde, M Masellis, M Masellis, M Masellis, Eliezer Masliah, Pamela J. McLean, Brit Mollenhauer, Brit Mollenhauer, Thomas J. Montine, Thomas J. Montine, Emilio Moreno, Emilio Moreno, Emilio Moreno, Etsuro Mori, Etsuro Mori, Etsuro Mori, Melissa E. Murray, John T. O'Brien, John T. O'Brien, Sotoshi Orimo, Sotoshi Orimo, Ronald B. Postuma, Ronald B. Postuma, Shankar Ramaswamy, Shankar Ramaswamy, Owen A. Ross, David P. Salmon, David P. Salmon, Andrew B. Singleton, Andrew B. Singleton, Angela Taylor, Angela Taylor, Alan Thomas, Pietro Tiraboschi, Jon B. Toledo, John Q. Trojanowski, Debby W. Tsuang, Zuzana Walker, Zuzana Walker, Masahito Yamada, Masahito Yamada, Kenji Kosaka