scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Applicability of nanofluids in high flux solar collectors

01 Apr 2011-Journal of Renewable and Sustainable Energy (American Institute of Physics)-Vol. 3, Iss: 2, pp 023104
TL;DR: In this article, a notional design of this type of nanofluid receiver is presented, and the authors show a theoretical improvement in efficiency of up to 10% as compared to surface-based collectors when solar concentration ratios are in the range of 100-1000.
Abstract: Concentrated solar energy has become the input for an increasing number of experimental and commercial thermal systems over the past 10–15 years [M. Thirugnanasambandam et al., Renewable Sustainable Energy Rev. 14 (2010)]. Recent papers have indicated that the addition of nanoparticles to conventional working fluids (i.e., nanofluids) can improve heat transfer and solar collection [H. Tyagi et al., J. Sol. Energy Eng. 131, 4 (2009); P. E. Phelan et al., Annu. Rev. Heat Transfer 14 (2005)]. This work indicates that power tower solar collectors could benefit from the potential efficiency improvements that arise from using a nanofluid working fluid. A notional design of this type of nanofluid receiver is presented. Using this design, we show a theoretical nanofluid enhancement in efficiency of up to 10% as compared to surface-based collectors when solar concentration ratios are in the range of 100–1000. Furthermore, our analysis shows that graphite nanofluids with volume fractions on the order of 0.001% or l...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum, which provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Abstract: Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

1,495 citations


Cites background from "Applicability of nanofluids in high..."

  • ...001% Cu nanofluid* PS10 wire mesh* Simulated backing selective surface* * Taylor et al.(25)...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations

Journal ArticleDOI
TL;DR: Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995 as mentioned in this paper, and there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10).
Abstract: Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.

679 citations


Cites background or methods from "Applicability of nanofluids in high..."

  • ...models and experiments with the concept of liquid-based nanofluid solar collectors [85], [87], [88], [267–274]....

    [...]

  • ...emerging synthesis techniques [2], [61–67], mass transport [68–72], boiling phenomena [13], [23], [102-106], absorption and conversion of radiation [80–88], optics [88–100],...

    [...]

  • ...experimentally reported [87], [272], [274–276] - see Table 3....

    [...]

  • ...[87] Ag, Au, Cu, Graph Water/ VP-1 Oil Dish / Power Towers M+E: Up to 10% efficiency improvement Taylor et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the preparation of metal and metal oxides nanofluids and hybrid or composite nano-fluids is discussed, and various techniques used to study the physical and chemical characteristics of nanof-luids are presented.
Abstract: Selection of suitable heat transfer fluid for heat dissipation is an important consideration in the design of heat exchanging systems. Nanofluid, a colloidal mixture made of a base fluid and a nanoparticle, is a new generation of heat transfer fluids becoming a high potential fluid in heat transfer applications due to enhanced thermal conductivity. Research studies about nanofluids are on the rise owing to the mounting interest and demand for nanofluids as heat transfer fluids in a wide variety of applications. Recently, nanofluid technology has a new dimension of impregnating two or more nanoparticles in base fluids, namely hybrid or composite nanofluids. This paper reviews the preparation of metal and metal oxides nanofluids and hybrid nanofluids and the various techniques used to study the physical and chemical characteristics of nanofluids. Thermo-physical and heat transfer properties of nanofluids including the improved thermal conductivity, viscosity and specific heat models for nanofluids are presented. Finally, various application areas of nanofluids, such as transportation, electronic cooling, energy storage, mechanical applications etc. are discussed.

462 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the important results regarding the improvement in the thermophysical properties of nanofluids and identified the opportunities for future research in the field of nanophotonics.
Abstract: This paper summarizes the important results regarding the improvement in the thermophysical properties of nanofluids. The influence of important parameters like particle's (loading, material, size, and shape), base fluid type, temperature, additives and pH value has been considered. There are many conflicting reports on the influence of parameters on thermophysical properties and the literature in this field is widespread, so this article would be beneficial for investigators to have a precise screening of a broad range of studies in this field. Further literature review of the applications of nanofluids with a particular focus on the advantages of using nanofluids in solar collectors and as coolants in automotive heat exchangers. The authors hope that this review can help in the translation of nanofluid technology from the lab scale research to industrial applications in solar collectors and automotive sector. At last, the paper identifies the opportunities for future research.

408 citations

References
More filters
Book
01 Jan 1993
TL;DR: In this article, the Monte Carlo method for thermal radiation was used to estimate the radiative properties of one-dimensional Gray Media, and the method of Spherical Harmonics (PN-Approximation) was used for the same purpose.
Abstract: 1. Fundamentals of Thermal Radiation 2. Radiative Property Predictions from Electromagnetic Wave Theory 3. Radiative Properties of Real Surfaces 4. View Factors 5. Radiative Exchange Between Gray, Diffuse Surfaces 6. Radiative Exchange Between Partially-Specular Gray Surfaces 7. Radiative Exchange Between Nonideal Surfaces 8. Surface Radiative Exchange in the Presence of Conduction and Convection 9. The Equation of Radiative Transfer in Participating Media 10. Radiative Properties of Molecular Gases 11. Radiative Properties of Particulate Media 12. Radiative Properties of Semitransparent Media 13. Exact Solutions for One-Dimensional Gray Media 14. Approximate Solution Methods for One-Dimensional Media 15. The Method of Spherical Harmonics (PN-Approximation) 16. The Method of Discrete Ordinates (SN-Approximation) 17. The Zonal Method 18. The Treatment of Collimated Irradiation 19. The Treatment of Nongray Extinction Coefficients 20. The Monte Carlo Method for Thermal Radiation 21. Radiation Combined with Conduction and Convection 22. Inverse Radiative Heat Transfer A. Constants and Conversion Factors B. Tables for Radiative Properties of Opaque Surfaces C. Blackbody Emissive Power Table D. View Factor Catalogue E. Exponential Integral Functions F. Computer Codes Author Index Subject Index

4,907 citations

Journal ArticleDOI
TL;DR: In this article, an experimental work on the convective heat transfer of nanofluids, made of γ-Al2O3 nanoparticles and de-ionized water, flowing through a copper tube in the laminar flow regime was conducted.

1,545 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental results on solar collectors based on nanofluids made from a variety of nanoparticles (carbon nanotubes, graphite, and silver) were reported.
Abstract: Solar energy is one of the best sources of renewable energy with minimal environmental impact. Direct absorption solar collectors have been proposed for a variety of applications such as water heating; however the efficiency of these collectors is limited by the absorption properties of the working fluid, which is very poor for typical fluids used in solar collectors. It has been shown that mixing nanoparticles in a liquid (nanofluid) has a dramatic effect on the liquid thermophysical properties such as thermal conductivity. Nanoparticles also offer the potential of improving the radiative properties of liquids, leading to an increase in the efficiency of direct absorption solar collectors. Here we report on the experimental results on solar collectors based on nanofluids made from a variety of nanoparticles (carbon nanotubes, graphite, and silver). We demonstrate efficiency improvements of up to 5% in solar thermal collectors by utilizing nanofluids as the absorption mechanism. In addition the experiment...

759 citations

Journal ArticleDOI
TL;DR: This paper reviews the present day solar thermal technologies and performance analyses of existing designs, mathematical simulation, design and fabrication of innovative designs with suggested improvements have been discussed.
Abstract: The use of solar energy in recent years has reached a remarkable edge. The continuous research for an alternative power source due to the perceived scarcity of fuel fossils is its driving force. It has become even more popular as the cost of fossil fuel continues to rise. The earth receives in just 1 h, more energy from the sun than what we consume in the whole world for 1 year. Its application was proven to be most economical, as most systems in individual uses requires but a few kilowatt of power. This paper reviews the present day solar thermal technologies. Performance analyses of existing designs (study), mathematical simulation (design) and fabrication of innovative designs with suggested improvements (development) have been discussed in this paper.

640 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the feasibility of using a nonconcentrating direct absorption solar collector (DAC) and compared its performance with that of a typical flat-plate collector.
Abstract: Due to its renewable and nonpolluting nature, solar energy is often used in applications such as electricity generation, thermal heating, and chemical processing. The most cost-effective solar heaters are of the "flat-plate" type, but these suffer from relatively low efficiency and outlet temperatures. The present study theoretically investigates the feasibility of using a nonconcentrating direct absorption solar collector (DAC) and compares its performance with that of a typical flat-plate collector. Here a nanofluid-a mixture of water and aluminum nanoparticles—is used as the absorbing medium. A two-dimensional heat transfer analysis was developed in which direct sunlight was incident on a thin flowing film of nanofluid. The effects of absorption and scattering within the nanofluid were accounted for. In order to evaluate the temperature profile and intensity distribution within the nanofluid, the energy balance equation and heat transport equation were solved numerically. It was observed that the presence of nanoparticles increases the absorption of incident radiation by more than nine times over that of pure water. According to the results obtained from this study, under similar operating conditions, the efficiency of a DA C using nanofluid as the working fluid is found to be up to 10% higher (on an absolute basis) than that of a flat-plate collector. Generally a DAC using nanofluids as the working fluid performs better than a flat-plate collector, however, much better designed flat-plate collectors might be able to match or outperform a nanofluids based DAC under certain conditions.

600 citations