scispace - formally typeset
Search or ask a question

Application areas of AIS: the past, present and future.

01 Jan 2008-
TL;DR: In this paper, the authors take a step back and reflect on the contributions that the Artificial Immune Systems (AIS) has brought to the application areas to which it has been applied, and suggest a set of problem features that they believe will allow the true potential of the immunological system to be exploited in computational systems.
Abstract: After a decade of research into the area of artificial immune systems, it is worthwhile to take a step back and reflect on the contributions that the paradigm has brought to the application areas to which it has been applied. Undeniably, there have been a lot of successful stories—however, if the field is to advance in the future and really carve out its own distinctive niche, then it is necessary to be able to illustrate that there are clear benefits to be obtained by applying this paradigm rather than others. This paper attempts to take stock of the application areas that have been tackled in the past, and ask the difficult question ‘‘was it worth it ?’’. We then attempt to suggest a set of problem features that we believe will allow the true potential of the immunological system to be exploited in computational systems, and define a unique niche for AIS
Citations
More filters
Journal ArticleDOI
TL;DR: The components and concepts that are used in various metaheuristics are outlined in order to analyze their similarities and differences and the classification adopted in this paper differentiates between single solution based metaheURistics and population based meta heuristics.

1,343 citations

Journal ArticleDOI
TL;DR: The statistical analysis based on three performance metrics show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems.
Abstract: Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIA's scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.

428 citations

Journal ArticleDOI
01 Jan 2008
TL;DR: This paper attempts to suggest a set of problem features that it believes will allow the true potential of the immunological system to be exploited in computational systems, and define a unique niche for AIS.
Abstract: After a decade of research into the area of artificial immune systems, it is worthwhile to take a step back and reflect on the contributions that the paradigm has brought to the application areas to which it has been applied. Undeniably, there have been a lot of successful stories-however, if the field is to advance in the future and really carve out its own distinctive niche, then it is necessary to be able to illustrate that there are clear benefits to be obtained by applying this paradigm rather than others. This paper attempts to take stock of the application areas that have been tackled in the past, and ask the difficult question ''was it worth it ?''. We then attempt to suggest a set of problem features that we believe will allow the true potential of the immunological system to be exploited in computational systems, and define a unique niche for AIS.

348 citations

Journal ArticleDOI
TL;DR: The existing theoretical work on AIS is reviewed and details of the theoretical analysis for each of the three main types of AIS algorithm, clonal selection, immune network and negative selection, are given.

291 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of the fundamentals of natural computing, particularly the fields listed above, emphasizing the biological motivation, some design principles, their scope of applications, current research trends and open problems.

278 citations

References
More filters
Journal ArticleDOI
TL;DR: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving and a number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class.
Abstract: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class. These theorems result in a geometric interpretation of what it means for an algorithm to be well suited to an optimization problem. Applications of the NFL theorems to information-theoretic aspects of optimization and benchmark measures of performance are also presented. Other issues addressed include time-varying optimization problems and a priori "head-to-head" minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems' enforcing of a type of uniformity over all algorithms.

10,771 citations

01 Jan 2001
TL;DR: The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data by carrying out sequential optimization over pairs of input patterns and providing a theoretical analysis of the statistical performance of the algorithm.
Abstract: Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a simple subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

4,410 citations

Journal ArticleDOI
TL;DR: A "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator and is proposed and tested empirically, showing that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.
Abstract: Evolutionary programming (EP) has been applied with success to many numerical and combinatorial optimization problems in recent years. EP has rather slow convergence rates, however, on some function optimization problems. In the paper, a "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator. The relationship between FEP and classical EP (CEP) is similar to that between fast simulated annealing and the classical version. Both analytical and empirical studies have been carried out to evaluate the performance of FEP and CEP for different function optimization problems. The paper shows that FEP is very good at search in a large neighborhood while CEP is better at search in a small local neighborhood. For a suite of 23 benchmark problems, FEP performs much better than CEP for multimodal functions with many local minima while being comparable to CEP in performance for unimodal and multimodal functions with only a few local minima. The paper also shows the relationship between the search step size and the probability of finding a global optimum and thus explains why FEP performs better than CEP on some functions but not on others. In addition, the importance of the neighborhood size and its relationship to the probability of finding a near-optimum is investigated. Based on these analyses, an improved FEP (IFEP) is proposed and tested empirically. This technique mixes different search operators (mutations). The experimental results show that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.

3,412 citations

Journal ArticleDOI
TL;DR: A system (OR-Library) that distributes test problems by electronic mail (e-mail) that has available test problems drawn from a number of different areas of operational research.
Abstract: In this note we present a system (OR-Library) that distributes test problems by electronic mail (e-mail). This system currently has available test problems drawn from a number of different areas of...

1,939 citations

Proceedings ArticleDOI
16 May 1994
TL;DR: A method for change detection which is based on the generation of T cells in the immune system is described, which reveals computational costs of the system and preliminary experiments illustrate how the method might be applied to the problem of computer viruses.
Abstract: The problem of protecting computer systems can be viewed generally as the problem of learning to distinguish self from other. The authors describe a method for change detection which is based on the generation of T cells in the immune system. Mathematical analysis reveals computational costs of the system, and preliminary experiments illustrate how the method might be applied to the problem of computer viruses. >

1,782 citations