scispace - formally typeset
Journal ArticleDOI

Application of a matched filter approach for finite aperture transducers for the synthetic aperture imaging of defects

07 Jun 2010-IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE)-Vol. 57, Iss: 6, pp 1368-1382

TL;DR: These studies confirm that MFA is an alternative to SAFT with little additional computational burden and can also be applied blindly, like SAFT, to effect synthetic focusing with distinct advantages in treating finite transducer effects, and in handling steered beam inspections.

AbstractThe suitability of the synthetic aperture imaging of defects using a matched filter approach on finite aperture transducers was investigated. The first part of the study involved the use a finite-difference time-domain (FDTD) algorithm to simulate the phased array ultrasonic wave propagation in an aluminum block and its interaction with side-drilled hole-like defects. B-scans were generated using the FDTD method for three active aperture transducer configurations of the phased array (a) single element and (b) 16-element linear scan mode, and (c) 16-element steering mode. A matched filter algorithm (MFA) was developed using the delay laws and the spatial impulse response of a finite size rectangular phased array transducer. The conventional synthetic aperture focusing technique (SAFT) algorithm and the MFA were independently applied on the FDTD signals simulated with the probe operating at a center frequency of 5 MHz and the processed B-scans were compared. The second part of the study investigated the capability of the MFA approach to improve the SNR. Gaussian white noise was added to the FDTD generated defect signals. The noisy B-scans were then processed using the SAFT and the MFA and the improvements in the SNR were estimated. The third part of the study investigated the application of the MFA to image and size surface-crack-like defects in pipe specimens obtained using a 45° steered beam from a phased array probe. These studies confirm that MFA is an alternative to SAFT with little additional computational burden. It can also be applied blindly, like SAFT, to effect synthetic focusing with distinct advantages in treating finite transducer effects, and in handling steered beam inspections. Finally, limitations of the MFA in dealing with larger-sized transducers are discussed.

...read more


Citations
More filters
Journal ArticleDOI
21 Apr 2015-Sensors
TL;DR: In this paper, an image reconstruction algorithm based on regularized least squares using a l 1 regularization norm was proposed to reconstruct an image of a point-like reflector, using both simulated and real data.
Abstract: Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, !-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan—about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR).

29 citations

Journal ArticleDOI
TL;DR: A seminumerical simulation method called SIRFEM is presented, which enables the efficient prediction of high-frequency transducer outputs and is able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface.
Abstract: We present a seminumerical simulation method called SIRFEM, which enables the efficient prediction of high-frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional finite-element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup—computed at a transducer center frequency of 20 MHz—show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen’s surface. For the purpose of a pure 2-D setup, the SIR of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.

5 citations


Cites background from "Application of a matched filter app..."

  • ...2510419 or optimal filter kernels can be derived [9]–[11]....

    [...]

01 Jan 2015
TL;DR: A new image reconstruction algorithm for ultrasonic NDT that reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration based on regularized least squares using a l1 regularization norm is presented.
Abstract: Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, !-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan—about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR).

1 citations


References
More filters
Book
01 Jan 1987

1,168 citations


"Application of a matched filter app..." refers background in this paper

  • ...although larger apertures lead to higher spatial resolution capabilities, the images of small defects need to be deconvolved with the corresponding point spread function for defect sizing [3]....

    [...]

  • ...small defects can be considered uniformly insonified to respond like point scatterers [3] having sharp sirs and uniform angular distributions....

    [...]

Journal ArticleDOI
TL;DR: This paper describes an alternative approach in which the full matrix of time domain signals from every transmitter–receiver pair is captured and post-processed and shown to offer significant performance advantages for NDE.
Abstract: Processing of ultrasonic array data is traditionally based on having parallel transmission circuits that enable staggered firing of transmitter elements to produce the desired wavefront. This paper describes an alternative approach in which the full matrix of time domain signals from every transmitter–receiver pair is captured and post-processed. Various post-processing approaches are modelled and assessed in terms of their ability to image a point-like reflector. Experimental results are then presented which show good quantitative agreement with the modelled results. An advanced processing algorithm is also implemented which allows the array to be focused at every point in the target region in both transmission and reception. This approach is shown to offer significant performance advantages for NDE.

594 citations


"Application of a matched filter app..." refers methods in this paper

  • ...other methods of synthetic focusing of the received data using a post-processing approach have been reported in the literature [4], [5]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an approach to compute the near and farfield transient radiation resulting from a specified velocity motion of a piston or array of pistons in a rigid infinite baffle is presented.
Abstract: An approach is presented to compute the near‐ and farfield transient radiation resulting from a specified velocity motion of a piston or array of pistons in a rigid infinite baffle. The approach, which is based on a Green's function development, utilizes a transformation of coordinates to simplify the evaluation of the resultant surface integrals. A simple expression is developed for an impulse response function, which is the time‐dependent velocity potential at a spatial point resulting from an impulse velocity of a piston of any shape. The time‐dependent velocity potential and pressure for any piston velocity motion may then be computed by a convolution of the piston velocity with the appropriate impulse response. The response of an array may be computed using superposition. Several examples illustrating the usefulness of the approach are presented. The farfield time‐dependent radiation from a rectangular piston is discussed for both continuous and pulsed velocity conditions. For a pulsed velocity of time duration T it is shown that the pressure at several of the field points can consist of two separate pulses of the same duration, when T is less than the travel time across the piston.

568 citations


"Application of a matched filter app..." refers background or methods in this paper

  • ...a prevalent numerical computational technique commonly used is the discrete representation array Modeling (dreaM) procedure, which is well suited for the computation of fields from planar and array transducers [6]–[8]....

    [...]

  • ...saft, though a rapid, simple, and effective sizing technique, cannot be readily applied to the defect images obtained from a finite-size-aperture transducer because the transducer has a broader sir characteristic [6]–[8] and a shaped beam....

    [...]

Journal ArticleDOI
TL;DR: Peng and Toksoz as mentioned in this paper presented a method for application of the perfectly matched layer absorbing boundary condition (ABC) to the P•SV velocity-stress finite-difference method.
Abstract: A method is presented for application of the perfectly matched layer (PML) absorbing boundary condition (ABC) to the P‐SV velocity–stress finite‐difference method The PML consists of a nonphysical material, containing both passive loss and dependent sources, that provides ‘‘active’’ absorption of fields It has been used in electromagnetic applications where it has provided excellent results for a wide range of angles and frequencies In this work, numerical simulations are used to compare the PML and an ‘‘optimal’’ second‐order elastic ABC [Peng and Toksoz, J Acoust Soc Am 95, 733–745 (1994)] Reflection factors are used to compare angular performance for continuous wave illumination; snapshots of potentials are used to compare performance for broadband illumination These comparisons clearly demonstrate the superiority of the PML formulation Within the PML there is a 60% increase in the number of unknowns per grid cell relative to the velocity–stress formulation However, the high quality of the PML ABC allows the use of a smaller grid, which can result in a lower overall computational cost

299 citations

Journal ArticleDOI
TL;DR: In this article, the basic mechanisms of these phenomena are discussed and the basic concepts can be found in a number of good text books and it seems worthwile to recall them in a short comprehensive paper.
Abstract: Damage of metals due to the influence of hydrogen and to stress corrosion cracking is quite frequent and leads to dangerous failures as well as to loss of property and large compensational payments by insurance companies. One reason for this, is that some designers and engineers seem to lack sufficient knowledge of the basic mechanisms of these phenomena and accordingly often have only vague ideas how to prevent such failure causes. Although the basic concepts can be found in a number of good text books it seems worthwile to recall them in a short comprehensive paper.

231 citations


"Application of a matched filter app..." refers methods in this paper

  • ...furthermore, the phased array system is emerging as a rapid and more convenient ultrasonic nondestructive evaluation technique for detection and real time imaging of defects in structural components [9]–[16]....

    [...]