scispace - formally typeset
Journal ArticleDOI

Application of artificial neural networks for the classification of liver lesions by image texture parameters

01 Jan 1996-Ultrasound in Medicine and Biology (Elsevier)-Vol. 22, Iss: 9, pp 1177-1181

TL;DR: In this article, a multilayered back-propagation neural network was used for liver lesion classification using B-scan ultrasound images for normal, hemangioma and malignant livers.

AbstractUltrasound imaging is a powerful tool for characterizing the state of soft tissues; however, in some cases, where only subtle differences in images are seen as in certain liver lesions such as hemangioma and malignancy, existing B-scan methods are inadequate. More detailed analyses of image texture parameters along with artificial neural networks can be utilized to enhance differentiation. From B-scan ultrasound images, 11 texture parameters comprising of first, second and run length statistics have been obtained for normal, hemangioma and malignant livers. Tissue characterization was then performed using a multilayered backpropagation neural network. The results for 113 cases have been compared with a classification based on discriminant analysis. For linear discriminant analysis, classification accuracy is 79.6% and with neural networks the accuracy is 100%. The present results show that neural networks classify better than discriminant analysis, demonstrating a much potential for clinical application.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images, and presents a classification of methodology in terms of use of prior information.
Abstract: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images. First, we present a review of articles by clinical application to highlight the approaches that have been investigated and degree of validation that has been done in different clinical domains. Then, we present a classification of methodology in terms of use of prior information. We conclude by selecting ten papers which have presented original ideas that have demonstrated particular clinical usefulness or potential specific to the ultrasound segmentation problem

1,047 citations

Journal ArticleDOI
01 Sep 2003
TL;DR: An approach to the detection of tumors in colonoscopic video based on a new color feature extraction scheme to represent the different regions in the frame sequence based on the wavelet decomposition, reaching 97% specificity and 90% sensitivity.
Abstract: We present an approach to the detection of tumors in colonoscopic video. It is based on a new color feature extraction scheme to represent the different regions in the frame sequence. This scheme is built on the wavelet decomposition. The features named as color wavelet covariance (CWC) are based on the covariances of second-order textural measures and an optimum subset of them is proposed after the application of a selection algorithm. The proposed approach is supported by a linear discriminant analysis (LDA) procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data sets of color colonoscopic videos. The performance in the detection of abnormal colonic regions corresponding to adenomatous polyps has been estimated high, reaching 97% specificity and 90% sensitivity.

415 citations

Journal ArticleDOI
01 Sep 2003
TL;DR: A computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented and shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Abstract: In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.

264 citations

Journal ArticleDOI
31 Mar 2016
TL;DR: Radiomics is defined as the high throughput extraction of quantitative imaging features or texture from imaging to decode tissue pathology and creating a high dimensional data set for feature extraction and can be further used to develop computational models using advanced machine learning algorithms that may serve as a tool for personalized diagnosis and treatment guidance.
Abstract: The increasing use of biomarkers in cancer have led to the concept of personalized medicine for patients. Personalized medicine provides better diagnosis and treatment options available to clinicians. Radiological imaging techniques provide an opportunity to deliver unique data on different types of tissue. However, obtaining useful information from all radiological data is challenging in the era of ‘big data’. Recent advances in computational power and the use of genomics have generated a new area of research termed Radiomics. Radiomics is defined as the high throughput extraction of quantitative imaging features or texture (radiomics) from imaging to decode tissue pathology and creating a high dimensional data set for feature extraction. Radiomic features provide information about the gray-scale patterns, inter-pixel relationships. In addition, shape and spectral properties can be extracted within the same regions of interest on radiological images. Moreover, these features can be further used t...

173 citations

Journal ArticleDOI
TL;DR: Classifications for the three sets of ultrasonic liver images reveal that the fractal feature vector based on M-band wavelet transform is trustworthy and the criterion for feature selection is specified and employed for performance comparisons herein.
Abstract: Describes the feasibility of selecting a fractal feature vector based on M-band wavelet transform to classify ultrasonic liver images - normal liver, cirrhosis, and hepatoma The proposed feature extraction algorithm is based on the spatial-frequency decomposition and fractal geometry Various classification algorithms based on respective texture measurements and filter banks are presented and tested Classifications for the three sets of ultrasonic liver images reveal that the fractal feature vector based on M-band wavelet transform is trustworthy A hierarchical classifier, which is based on the proposed feature extraction algorithm is at least 967% accurate in the distinction between normal and abnormal liver images and is at least 936% accurate in the distinction between cirrhosis and hepatoma liver images Additionally, the criterion for feature selection is specified and employed for performance comparisons herein

164 citations


References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

18,474 citations

Journal ArticleDOI
TL;DR: This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification and exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components.
Abstract: Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes are connected via weights that are typically adapted during use to improve performance. There has been a recent resurgence in the field of artificial neural nets caused by new net topologies and algorithms, analog VLSI implementation techniques, and the belief that massive parallelism is essential for high performance speech and image recognition. This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification. These nets are highly parallel building blocks that illustrate neural net components and design principles and can be used to construct more complex systems. In addition to describing these nets, a major emphasis is placed on exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components. Single-layer nets can implement algorithms required by Gaussian maximum-likelihood classifiers and optimum minimum-error classifiers for binary patterns corrupted by noise. More generally, the decision regions required by any classification algorithm can be generated in a straightforward manner by three-layer feed-forward nets.

7,595 citations

Book
01 Jan 1974
TL;DR: The objective is to establish an experimental procedure and show direct AFM progression from EMT to EMT using a simple, straightforward, and reproducible procedure.
Abstract: Pathologic basis of disease , Pathologic basis of disease , کتابخانه دیجیتالی دانشگاه علوم پزشکی و خدمات درمانی شهید بهشتی

5,159 citations

Journal ArticleDOI
01 Apr 1976
TL;DR: In this paper, three standard approaches to automatic texture classification make use of features based on the Fourier power spectrum, on second-order gray level statistics, and on first-order statistics of gray level differences, respectively.
Abstract: Three standard approaches to automatic texture classification make use of features based on the Fourier power spectrum, on second-order gray level statistics, and on first-order statistics of gray level differences, respectively. Feature sets of these types, all designed analogously, were used to classify two sets of terrain samples. It was found that the Fourier features generally performed more poorly, while the other feature sets all performned comparably.

1,348 citations

Journal ArticleDOI
TL;DR: The gray value distribution of the runs is proposed to be used to define two new features, viz., low gray level run emphasis ( LGRE) and high gray levelrun emphasis ( HGRE).
Abstract: Most of the texture measures based on run lengths use only the lengths of the runs and their distribution. We propose to use the gray value distribution of the runs to define two new features, viz., low gray level run emphasis ( LGRE ) and high gray level run emphasis ( HGRE ).

395 citations