scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities.

10 Jan 2019-Science of The Total Environment (Elsevier)-Vol. 647, pp 1410-1420
TL;DR: Sewage sludge-derived amendments must be properly treated and managed if they are to be applied to agricultural soil, posing a risk of dissemination of antibiotic resistance.
About: This article is published in Science of The Total Environment.The article was published on 2019-01-10. It has received 122 citations till now. The article focuses on the topics: Sludge & Sewage treatment.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the tube-filled nanocomposites Co3O4@CNTs were successfully prepared and applied for the first time in the permonosulfate (PMS) system to degrade norfloxacin (NX).

131 citations

Journal ArticleDOI
TL;DR: In this paper, the sustainable transformation of various types of biomass waste such as animal manure, sewage sludge, municipal solid waste, and food waste, into organic fertilizers and their impact on waste minimization and agricultural enhancement is discussed.
Abstract: The management of solid waste presents a challenge for developing countries as the generation of waste is increasing at a rapid and alarming rate. Much awareness towards the sustainability and technological advances for solid waste management has been implemented to reduce the generation of unnecessary waste. The recycling of this waste is being applied to produce valuable organic matter, which can be used as fertilizers or amendments to improve the soil structure. This review studies the sustainable transformation of various types of biomass waste such as animal manure, sewage sludge, municipal solid waste, and food waste, into organic fertilizers and their impact on waste minimization and agricultural enhancement. The side effects of these organic fertilizers towards the soil are evaluated as the characteristics of these fertilizers will differ depending on the types of waste used, in addition to the varying chemical composition of the organic fertilizers. This work will provide an insight to the potential management of biomass waste to be produced into organic fertilizer and the advantages of substituting chemical fertilizer with organic fertilizer derived from the biomass waste.

106 citations

Journal ArticleDOI
TL;DR: The sources, physical properties and fate of the MPs in sludge, as well as their separation, identification and statistical methods are summarized and the specific long-term risks to the environment caused by MPs in soil with sludge amendment require further exploration and investigation.

88 citations

Journal ArticleDOI
12 Sep 2019-Agronomy
TL;DR: There is, currently, much interest in the development of efficient strategies to mitigate the risks associated to the application of organic amendments to agricultural soil, while benefiting from their numerous advantages.
Abstract: The use of organic amendments in agriculture is a common practice due to their potential to increase crop productivity and enhance soil health. Indeed, organic amendments of different origin and composition (e.g., animal slurry, manure, compost, sewage sludge, etc.) can supply valuable nutrients to the soil, as well as increase its organic matter content, with concomitant benefits for soil health. However, the application of organic amendments to agricultural soil entails a variety of risks for environmental and human health. Organic amendments often contain a range of pollutants, including heavy metals, persistent organic pollutants, potential human pathogens, and emerging pollutants. Regarding emerging pollutants, the presence of antibiotic residues, antibiotic-resistant bacteria, and antibiotic-resistance genes in agricultural amendments is currently a matter of much concern, due to the concomitant risks for human health. Similarly, currently, the introduction of microplastics to agricultural soil, via the application of organic amendments (mainly, sewage sludge), is a topic of much relevance, owing to its magnitude and potential adverse effects for environmental health. There is, currently, much interest in the development of efficient strategies to mitigate the risks associated to the application of organic amendments to agricultural soil, while benefiting from their numerous advantages.

87 citations

Journal ArticleDOI
TL;DR: In this article, a review of the existing knowledge on selected emerging contaminants in treated sewage sludge and describes the impact of these pollutants on the environment and living organisms based on 183 publications selected from over 16,000 papers on related topics published over the last ten years.

76 citations

References
More filters
Journal ArticleDOI
01 Dec 2001-Methods
TL;DR: The 2-Delta Delta C(T) method as mentioned in this paper was proposed to analyze the relative changes in gene expression from real-time quantitative PCR experiments, and it has been shown to be useful in the analysis of realtime, quantitative PCR data.

139,407 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Abstract: The effects of fumigation on organic C extractable by 0.5 M K2SO4 were examined in a contrasting range of soils. EC (the difference between organic C extracted by 0.5 M K2SO4 from fumigated and non-fumigated soil) was about 70% of FC (the flush of CO2-C caused by fumigation during a 10 day incubation), meaned for ten soils. There was a close relationship between microbial biomass C, measured by fumigation-incubation (from the relationship Biomass C = FC/0.45) and EC given by the equation: Biomass C = (2.64 ± 0.060) EC that accounted for 99.2% of the variance in the data. This relationship held over a wide range of soil pH (3.9–8.0). ATP and microbial biomass N concentrations were measured in four of the soils. The (ATP)(EC) ratios were very similar in the four soils, suggesting that both ATP and the organic C rendered decomposable by CHCl3 came from the soil microbial biomass. The C:N ratio of the biomass in a strongly acid (pH 4.2) soil was greater (9.4) than in the three less-acid soils (mean C:N ratio 5.1). We propose that the organic C rendered extractable to 0.5 m K2SO4 after a 24 h CHCl3-fumigation (EC) comes from the cells of the microbial biomass and can be used to estimate soil microbial biomass C in both neutral and acid soils.

9,975 citations

Journal ArticleDOI
TL;DR: It is shown that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.
Abstract: DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.

6,840 citations

Journal ArticleDOI
TL;DR: It is found that the composition of most microbial groups is sensitive and not immediately resilient to disturbance, regardless of taxonomic breadth of the group or the type of disturbance, and a simple framework to incorporate microbial community composition into ecosystem process models is proposed.
Abstract: Although it is generally accepted that plant community composition is key for predicting rates of ecosystem processes in the face of global change, microbial community composition is often ignored in ecosystem modeling. To address this issue, we review recent experiments and assess whether microbial community composition is resistant, resilient, or functionally redundant in response to four different disturbances. We find that the composition of most microbial groups is sensitive and not immediately resilient to disturbance, regardless of taxonomic breadth of the group or the type of disturbance. Other studies demonstrate that changes in composition are often associated with changes in ecosystem process rates. Thus, changes in microbial communities due to disturbance may directly affect ecosystem processes. Based on these relationships, we propose a simple framework to incorporate microbial community composition into ecosystem process models. We conclude that this effort would benefit from more empirical data on the links among microbial phylogeny, physiological traits, and disturbance responses. These relationships will determine how readily microbial community composition can be used to predict the responses of ecosystem processes to global change.

2,117 citations