scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging.

01 May 2018-Additive manufacturing (Elsevier BV)-Vol. 21, pp 517-528
TL;DR: In this article, an in- situ defect detection strategy for powder bed fusion (PBF) AM using supervised machine learning is described, where multiple images were collected at each build layer using a high resolution digital single-lens reflex (DSLR) camera.
Abstract: Process monitoring in additive manufacturing (AM) is a crucial component in the mission of broadening AM industrialization. However, conventional part evaluation and qualification techniques, such as computed tomography (CT), can only be utilized after the build is complete, and thus eliminate any potential to correct defects during the build process. In contrast to post-build CT, in situ defect detection based on in situ sensing, such as layerwise visual inspection, enables the potential for in-process re-melting and correction of detected defects and thus facilitates in-process part qualification. This paper describes the development and implementation of such an in situ defect detection strategy for powder bed fusion (PBF) AM using supervised machine learning. During the build process, multiple images were collected at each build layer using a high resolution digital single-lens reflex (DSLR) camera. For each neighborhood in the resulting layerwise image stack, multi-dimensional visual features were extracted and evaluated using binary classification techniques, i.e. a linear support vector machine (SVM). Through binary classification, neighborhoods are then categorized as either a flaw, i.e. an undesirable interruption in the typical structure of the material, or a nominal build condition. Ground truth labels, i.e. the true location of flaws and nominal build areas, which are needed to train the binary classifiers, were obtained from post-build high-resolution 3D CT scan data. In CT scans, discontinuities, e.g. incomplete fusion, porosity, cracks, or inclusions, were identified using automated analysis tools or manual inspection. The xyz locations of the CT data were transferred into the layerwise image domain using an affine transformation, which was estimated using reference points embedded in the part. After the classifier had been properly trained, in situ defect detection accuracies greater than 80% were demonstrated during cross-validation experiments.
Citations
More filters
Journal ArticleDOI
TL;DR: The infrastructure under development for specification standards in AM is presented, and the research on geometrical dimensioning and tolerancing for AM is reviewed, and post-process metrology is covered, including the measurement of surface form, texture and internal features.

177 citations

Journal ArticleDOI
TL;DR: An in-depth review of sensing and control design suitable for a WAAM system, including technologies developed for the generic Arc Welding process, the Wire Arc Additive manufacturing process and laser Additive Manufacturing is provided.

159 citations

Journal ArticleDOI
TL;DR: This paper deals with industrial applications of ML techniques, intending to clarify the real potentialities, as well as potential flaws, of ML algorithms applied to operation management, and a comprehensive review is presented and organized in a way that should facilitate the orientation of practitioners in this field.
Abstract: Machine Learning (ML) is a branch of artificial intelligence that studies algorithms able to learn autonomously, directly from the input data. Over the last decade, ML techniques have made a huge leap forward, as demonstrated by Deep Learning (DL) algorithms implemented by autonomous driving cars, or by electronic strategy games. Hence, researchers have started to consider ML also for applications within the industrial field, and many works indicate ML as one the main enablers to evolve a traditional manufacturing system up to the Industry 4.0 level. Nonetheless, industrial applications are still few and limited to a small cluster of international companies. This paper deals with these topics, intending to clarify the real potentialities, as well as potential flaws, of ML algorithms applied to operation management. A comprehensive review is presented and organized in a way that should facilitate the orientation of practitioners in this field. To this aim, papers from 2000 to date are categorized in terms of the applied algorithm and application domain, and a keyword analysis is also performed, to details the most promising topics in the field. What emerges is a consistent upward trend in the number of publications, with a spike of interest for unsupervised and especially deep learning techniques, which recorded a very high number of publications in the last five years. Concerning trends, along with consolidated research areas, recent topics that are growing in popularity were also discovered. Among these, the main ones are production planning and control and defect analysis, thus suggesting that in the years to come ML will become pervasive in many fields of operation management.

136 citations

Journal ArticleDOI
TL;DR: The results show that semi-supervised learning is a promising approach for the automatic certification of AM builds that can be implemented at a fraction of the cost currently required.
Abstract: Risk-averse areas such as the medical, aerospace and energy sectors have been somewhat slow towards accepting and applying Additive Manufacturing (AM) in many of their value chains. This is partly because there are still significant uncertainties concerning the quality of AM builds. This paper introduces a machine learning algorithm for the automatic detection of faults in AM products. The approach is semi-supervised in that, during training, it is able to use data from both builds where the resulting components were certified and builds where the quality of the resulting components is unknown. This makes the approach cost efficient, particularly in scenarios where part certification is costly and time consuming. The study specifically analyses Laser Powder-Bed Fusion (L-PBF) builds. Key features are extracted from large sets of photodiode data, obtained during the building of 49 tensile test bars. Ultimate tensile strength (UTS) tests were then used to categorise each bar as ‘faulty’ or ‘acceptable’. Using a variety of approaches (Receiver Operating Characteristic (ROC) curves and 2-fold cross-validation), it is shown that, despite utilising a fraction of the available certification data, the semi-supervised approach can achieve results comparable to a benchmark case where all data points are labelled. The results show that semi-supervised learning is a promising approach for the automatic certification of AM builds that can be implemented at a fraction of the cost currently required.

115 citations

Journal ArticleDOI
TL;DR: In this article , a review of common defects and anomalies in powder bed fusion metal additive manufacturing processes is presented, where the formation mechanism and practical mitigation strategies are discussed, as well as properties such as mechanical behavior and corrosion resistance of defective parts.
Abstract: • Common defects and anomalies in powder bed fusion metal additive manufacturing. • Formation mechanism and practical mitigation strategies are discussed. • Defects/anomalies are classified as powder-related, processing-related, and post-processing related issues. • Properties such as mechanical behavior and corrosion resistance of defective parts are discussed. • Current challenges, gaps, and future trends are discussed. Metal additive manufacturing is a disruptive technology that is revolutionizing the manufacturing industry. Despite its unrivaled capability for directly fabricating metal parts with complex geometries, the wide realization of the technology is currently limited by microstructural defects and anomalies, which could significantly degrade the structural integrity and service performance of the product. Accurate detection, characterization, and prediction of these defects and anomalies have an important and immediate impact in manufacturing fully-dense and defect-free builds. This review seeks to elucidate common defects/anomalies and their formation mechanisms in powder bed fusion additive manufacturing processes. They could arise from raw materials, processing conditions, and post-processing. While defects/anomalies in laser welding have been studied extensively, their formation and evolution remain unclear. Additionally, the existence of powder in powder bed fusion techniques may generate new types of defects, e.g., porosity transferring from powder to builds. Practical strategies to mitigate defects are also addressed through fundamental understanding of their formation. Such explorations enable the validation and calibration of models and ease the process qualification without costly trial-and-error experimentation.

106 citations

References
More filters
Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations

Journal ArticleDOI
01 Jun 2010
TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Abstract: Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into a system of ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is to find structure in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first published in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, K-means is still widely used. This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous feature selection during data clustering, and large scale data clustering.

6,601 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

Journal ArticleDOI
TL;DR: Future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration are pointed out.
Abstract: Additive manufacturing (AM) is poised to bring about a revolution in the way products are designed, manufactured, and distributed to end users. This technology has gained significant academic as well as industry interest due to its ability to create complex geometries with customizable material properties. AM has also inspired the development of the maker movement by democratizing design and manufacturing. Due to the rapid proliferation of a wide variety of technologies associated with AM, there is a lack of a comprehensive set of design principles, manufacturing guidelines, and standardization of best practices. These challenges are compounded by the fact that advancements in multiple technologies (for example materials processing, topology optimization) generate a "positive feedback loop" effect in advancing AM. In order to advance research interest and investment in AM technologies, some fundamental questions and trends about the dependencies existing in these avenues need highlighting. The goal of our review paper is to organize this body of knowledge surrounding AM, and present current barriers, findings, and future trends significantly to the researchers. We also discuss fundamental attributes of AM processes, evolution of the AM industry, and the affordances enabled by the emergence of AM in a variety of areas such as geometry processing, material design, and education. We conclude our paper by pointing out future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration. The fundamental attributes and challenges/barriers of Additive Manufacturing (AM).The evolution of research on AM with a focus on engineering capabilities.The affordances enabled by AM such as geometry, material and tools design.The developments in industry, intellectual property, and education-related aspects.The important future trends of AM technologies.

1,792 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations