scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Applications of electro-rheological fluids in vibration control: a survey

01 Aug 1996-Smart Materials and Structures (IOP Publishing)-Vol. 5, Iss: 4, pp 464-482
TL;DR: A comprehensive survey of electro-rheological (ER) fluids for vibration control can be found in this paper, where the key modes of operation are identified and progress towards a unified approach to visualizing the macroscopic behaviour is summarized.
Abstract: Electro-rheological (ER) fluids are now regarded as one of the most versatile of the materials available for building smart structures and machines. In principle, ER fluids promise an elegant means of providing continuously variable forces for the control of mechanical vibrations. In practice, the development of industrial devices has been hampered by the unavailability of suitable ER fluids. Prompted by recent advances in ER fluid development this paper provides a comprehensive survey of ER devices for vibration control. The key modes of operation are identified and progress towards a unified approach to visualizing the macroscopic behaviour is summarized before presenting a comprehensive survey which includes contributions to the identification of ER fluid dynamics and the application of feedback control. The discussion of results includes some thoughts on future trends.
Citations
More filters
Journal ArticleDOI
TL;DR: A detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications, including both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Abstract: This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

897 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive assessment of recent developments of nonlinear isolators in the absence of active control means is presented, which highlights resolved and unresolved problems and recommendations for future research directions.

885 citations

Journal ArticleDOI
TL;DR: The potential and practical applications of stimuli-responsive wormlike micelles are described, with a significant potential in a wide range of other technological applications, including biomedicine, cleaning processes, drag reduction, template synthesis, to name but a few.
Abstract: A major scientific challenge of the past decade pertaining to the field of soft matter has been to craft 'adaptable' materials, inspired by nature, which can dynamically alter their structure and functionality on demand, in response to triggers produced by environmental changes. Amongst these, 'smart' surfactant wormlike micelles, responsive to external stimuli, are a particularly recent area of development, yet highly promising, given the versatility of the materials but simplicity of the design-relying on small amphiphilic molecules and their spontaneous self-assembly. The switching 'on' and 'off' of the micellar assembly structures has been reported using electrical, optical, thermal or pH triggers and is now envisaged for multiple stimuli. The structural changes, in turn, can induce major variations in the macroscopic characteristics, affecting properties such as viscosity and elasticity and sometimes even leading to a spontaneous and effective 'sol-gel' transition. These original smart materials based on wormlike micelles have been successfully used in the oil industry, and offer a significant potential in a wide range of other technological applications, including biomedicine, cleaning processes, drag reduction, template synthesis, to name but a few. This review will report results in this field published over the last few years, describe the potential and practical applications of stimuli-responsive wormlike micelles and point out future challenges.

426 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of magnetorheological dampers are summarized according to the measured responses under different conditions and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers were reviewed.
Abstract: Due to the inherent nonlinear nature of magnetorheological (MR) dampers, one of the challenging aspects for developing and utilizing these devices to achieve high performance is the development of models that can accurately describe their unique characteristics. In this review, the characteristics of MR dampers are summarized according to the measured responses under different conditions. On these bases, the considerations and methods of the parametric dynamic modelling for MR dampers are given and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers are reviewed. In the past two decades, the models for MR dampers have been focused on how to improve the modelling accuracy. Although the force–displacement behaviour is well represented by most of the proposed dynamic models for MR dampers, no simple parametric models with high accuracy for MR dampers can be found. In addition, the parametric dynamic models for MR dampers with on-line updating ability and the inverse parametric models for MR dampers are scarcely explored. Moreover, whether one dynamic model for MR dampers can portray the force–displacement and force–velocity behaviour is not only determined by the dynamic model itself but also determined by the identification method.

408 citations

Journal ArticleDOI
TL;DR: The magnetorheological fluid dampers could offer an outstanding capability in semiactive vibration control due to excellent dynamical features such as fast response, environmentally robust characteristics, large force capacity, low power consumption, and simple interfaces between electronic input and mechanical output as mentioned in this paper.
Abstract: Magnetorheological fluid technology has gained significant development during the past decades. The application of magnetorheological fluids has grown rapidly in civil engineering, safety engineering, transportation, and life science with the development of magnetorheological fluid–based devices, especially magnetorheological fluid dampers. The magnetorheological fluid dampers could offer an outstanding capability in semiactive vibration control due to excellent dynamical features such as fast response, environmentally robust characteristics, large force capacity, low power consumption, and simple interfaces between electronic input and mechanical output. To address the fast growing demand on magnetorheological fluid damping technology in extensive engineering practices, the state-of-the-art development is presented in this article, which provides a comprehensive review on the structure design and its analysis of magnetorheological fluid dampers (or systems). This can be regarded as a useful complement to...

298 citations


Cites methods from "Applications of electro-rheological..."

  • ...Specifically, a nonlinear biviscous model expanded the Bingham model by incorporating a preyield linear damping (Stanwayy et al., 1996)....

    [...]

  • ...Thus, improved rheological models are utilized to describe more nonlinear and complex behavior of MRFs. Specifically, a nonlinear biviscous model expanded the Bingham model by incorporating a preyield linear damping (Stanwayy et al., 1996)....

    [...]

References
More filters
Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe some of the phenomena found to have their origin in electrically induced fibration of small particles in fluid liquid suspension, including the induced shear resistances found in layers of the fluid when bounded by potentialized electrode surfaces.
Abstract: This paper describes some of the phenomena found to have their origin in electrically induced fibration of small particles in fluid liquid suspension. Particular attention is given to induced shear resistances found in layers of the fluid (0.01 to 0.15 cm) when bounded by potentialized electrode surfaces. Ingredients and manner of compounding concentrated fluids capable of reversible shear resistance up to several hundred grams per cm2 are described. Dynamic induced shear resistance or the corresponding induced bulk viscosity are shown to be a parabolic function of field strength wherein parameters dependent on surface conditions of the particles are involved. Various properties of these fluids are discussed with regard to the mechanism of induced fibration, its application in slip clutches and other hydraulic devices, and some of the factors for best results. Consideration is given to the analogous magnetically induced fibration of ferromagnetic particles in fluid suspension. It is found that the observe...

1,151 citations

Book
01 Jan 1984
TL;DR: This paper presents a meta-analysis of the Dynamic and Static Behavior of Chemical Processes and the design of Control Systems for Multivariable Processes using digital computers.
Abstract: 1 The Control of a Chemical Process: Its Characteristics and Associated Problems 2 Modeling the Dynamic and Static Behavior of Chemical Processes 3 Analysis of the Dynamic Behavior of Chemical Processes 4 Analysis and Design of Feedback Control Systems 5 Analysis and Design of Advanced Control Systems 6 Design of Control Systems for Multivariable Processes 7 Process Control Using Digital Computers

796 citations

Journal ArticleDOI
01 Dec 1988

601 citations

Book
30 Apr 1990
TL;DR: Aircraft flight control the equations of motion of an aircraft aircraft stability flexibility upon aircraft motion disturbances which affect aircraft motion flying and handling qualities control system design methods.
Abstract: Aircraft flight control the equations of motion of an aircraft aircraft stability flexibility upon aircraft motion disturbances which affect aircraft motion flying and handling qualities control system design methods I control system design methods II stability augmentation systems attitude control systems flight path control systems adaptive flight control systems.

535 citations