scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Applications of inverse tempered stable subordinators

TL;DR: This paper shows that the probability density function of an inverse tempered stable subordinator solves a tempered time-fractional diffusion equation, and its “folded” density solves a temperamental telegraph equation.
Abstract: The inverse tempered stable subordinator is a stochastic process that models power law waiting times between particle movements, with an exponential tempering that allows all moments to exist. This paper shows that the probability density function of an inverse tempered stable subordinator solves a tempered time-fractional diffusion equation, and its “folded” density solves a tempered time-fractional telegraph equation. Two explicit formulae for the density function are developed, and applied to compute explicit solutions to tempered fractional Cauchy problems, where a tempered fractional derivative replaces the first derivative in time. Several examples are given, including tempered fractional diffusion equations on bounded or unbounded domains, and the probability distribution of a tempered fractional Poisson process. It is shown that solutions to the tempered fractional diffusion equation have a cusp at the origin.
Citations
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed two models of subdiffusion with stochastic resetting, and derived exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics.
Abstract: We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk scheme and independent resetting events generated uniformly in time according to the Poisson point process. In the first model the whole process is reset to the initial state, whereas in the second model only the position is subject to resets. The distinction between these two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics. We also show, with an example of a constant drift, how these models can be generalized to include external forces. Possible applications to data analysis and modeling of biological systems are also discussed.

61 citations

28 Aug 2011
TL;DR: In this paper, it was shown that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional poisson process with Mittag-Leffler waiting times.
Abstract: The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

50 citations

Journal ArticleDOI
TL;DR: In this article, the authors unify and clarify the recent advances in the analysis of the fractional and generalized fractional Partial Differential Equations of Caputo and Riemann-Liouville type arising essentially from the probabilistic point of view.
Abstract: This paper aims at unifying and clarifying the recent advances in the analysis of the fractional and generalized fractional Partial Differential Equations of Caputo and Riemann-Liouville type arising essentially from the probabilistic point of view. This point of view leads to the path integral representation for the solutions of these equations, which is seen to be stable with respect to the initial data and key parameters and is directly amenable to numeric calculations (Monte-Carlo simulation). In many cases these solutions can be compactly presented via the wide class of operator-valued analytic functions of the Mittag-Leffler type, which are proved to be expressed as the Laplace transforms of the exit times of monotone Markov processes.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinators, which they call TCFPP-I and TC FPP-II, respectively.
Abstract: In this paper, we study the fractional Poisson process (FPP) time-changed by an independent Levy subordinator and the inverse of the Levy subordinator, which we call TCFPP-I and TCFPP-II, respectively. Various distributional properties of these processes are established. We show that, under certain conditions, the TCFPP-I has the long-range dependence property, and also its law of iterated logarithm is proved. It is shown that the TCFPP-II is a renewal process and its waiting time distribution is identified. The bivariate distributions of the TCFPP-II are derived. Some specific examples for both the processes are discussed. Finally, we present simulations of the sample paths of these processes.

28 citations

References
More filters
Book
01 Jan 1999

15,898 citations

Book
01 Jan 1968
TL;DR: Weak Convergence in Metric Spaces as discussed by the authors is one of the most common modes of convergence in metric spaces, and it can be seen as a form of weak convergence in metric space.
Abstract: Weak Convergence in Metric Spaces. The Space C. The Space D. Dependent Variables. Other Modes of Convergence. Appendix. Some Notes on the Problems. Bibliographical Notes. Bibliography. Index.

13,153 citations

Book
02 Mar 2006
TL;DR: In this article, the authors present a method for solving Fractional Differential Equations (DFE) using Integral Transform Methods for Explicit Solutions to FractionAL Differentially Equations.
Abstract: 1. Preliminaries. 2. Fractional Integrals and Fractional Derivatives. 3. Ordinary Fractional Differential Equations. Existence and Uniqueness Theorems. 4. Methods for Explicitly solving Fractional Differential Equations. 5. Integral Transform Methods for Explicit Solutions to Fractional Differential Equations. 6. Partial Fractional Differential Equations. 7. Sequential Linear Differential Equations of Fractional Order. 8. Further Applications of Fractional Models. Bibliography Subject Index

11,492 citations

Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Book
08 Dec 1993
TL;DR: Fractional integrals and derivatives on an interval fractional integral integrals on the real axis and half-axis further properties of fractional integral and derivatives, and derivatives of functions of many variables applications to integral equations of the first kind with power and power-logarithmic kernels integral equations with special function kernels applications to differential equations as discussed by the authors.
Abstract: Fractional integrals and derivatives on an interval fractional integrals and derivatives on the real axis and half-axis further properties of fractional integrals and derivatives other forms of fractional integrals and derivatives fractional integrodifferentiation of functions of many variables applications to integral equations of the first kind with power and power-logarithmic kernels integral equations fo the first kind with special function kernels applications to differential equations.

7,096 citations