scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Applications of lignin-derived catalysts for green synthesis

TL;DR: In this paper, the application of lignin-derived catalyst for green organic synthesis over latest two decades and aims to present a renewable alternative for conventional catalyst for future industry application.
About: This article is published in Green Energy & Environment.The article was published on 2019-07-01 and is currently open access. It has received 81 citations till now. The article focuses on the topics: Catalysis & Knoevenagel condensation.
Citations
More filters
Journal ArticleDOI
01 May 2020
TL;DR: This up-to-date survey provides a comprehensive information of the recent advances of processing and valorization of cellulose, lignin and lignocellulose in ionic liquids, and accelerates the development and utilization of the renewable plant biomass resources.
Abstract: Cellulose, lignin and lignocellulose are important bioresources in the nature. Their effective and environmentally friendly utilization not only reduces dependence on fossil resources but also protects the environment. Recently, a class of novel eco-friendly solvents, ionic liquids, is employed to dissolve and process these bioresources. In this mini-review, we summarized the recent advances of processing and valorization of cellulose, lignin and lignocellulose in ionic liquids. It is expected that this up-to-date survey provides a comprehensive information of this field, and accelerates the development and utilization of the renewable plant biomass resources.

158 citations


Cites background from "Applications of lignin-derived cata..."

  • ...7 a: Representative structures of lignin and its monolignol units (Zhu et al., 2019) (b) Solubility of softwood kraft pulp lignin in ILs (Pu et al....

    [...]

  • ...Lignin, a kind of renewable aromatic biopolymer, is the second most abundant biomass resource in the nature (Zakzeski et al., 2010; Zhu et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: A review on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels can be found in this paper .

55 citations

Journal ArticleDOI
TL;DR: Renewable and sustainable thermosets with thermo-mechanical properties that are equivalent to, or better than, those of petroleum-derived commercial incumbents are desirable to mitigate environment degradation as discussed by the authors.
Abstract: Renewable and sustainable thermosets with thermo-mechanical properties that are equivalent to, or better than, those of petroleum-derived commercial incumbents are desirable to mitigate environment...

54 citations

Journal ArticleDOI
TL;DR: In this article , a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air.
Abstract: The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.

44 citations

Journal ArticleDOI
TL;DR: Kraft lignin (KL) and castor oil (CO) were used as polyols in the synthesis of bio-based polyurethanes (PUs) in the absence of both solvents and catalysts at room temperature with simultaneous film formation.

39 citations

References
More filters
Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: An updated evaluation of potential target structures using similar selection methodology, and an overview of the technology developments that led to the inclusion of a given compound are presented.

3,536 citations

Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations

Journal ArticleDOI
TL;DR: In this paper, it has been shown that Ionic liquids, being composed entirely of ions, are green solvents, and that a wide range of chemical reactions can be performed in them.
Abstract: Ionic liquids, being composed entirely of ions, were once mainly of interest to electrochemists. Recently, however, it has become apparent that, inter alia, their lack of measurable vapor pressure characterizes them as green solvents, and that a wide range of chemical reactions (reviewed here) can be performed in them.

2,627 citations

Journal ArticleDOI
TL;DR: An overview of the use and impact of dialkylbiarylphosphine ligands in the Suzuki-Miyaura cross-coupling reaction and the utility of these ligands has been successfully demonstrated in a wide number of synthetic applications, including industrially relevant processes.
Abstract: The cores of many types of polymers, ligands, natural products, and pharmaceuticals contain biaryl or substituted aromatic structures, and efficient methods of synthesizing these structures are crucial to the work of a broad spectrum of organic chemists. Recently, Pd-catalyzed carbon−carbon bond-forming processes, particularly the Suzuki−Miyaura cross-coupling reaction (SMC), have risen in popularity for this purpose. The SMC has many advantages over other methods for constructing these moieties, including mild conditions, high tolerance toward functional groups, the commercial availability and stability of its reagents, and the ease of handling and separating byproducts from its reaction mixtures. Until 1998, most catalysts for the SMC employed triarylphosphine ligands. More recently, new bulky and electron-rich phosphine ligands, which can dramatically improve the efficiency and selectivity of such cross-coupling reactions, have been introduced. In the course of our studies on carbon−nitrogen bond-formi...

2,064 citations