scispace - formally typeset
Search or ask a question
BookDOI

Applied Homogeneous Catalysis with Organometallic Compounds

About: The article was published on 1996-08-29. It has received 2237 citations till now. The article focuses on the topics: Homogeneous catalysis & Organometallic chemistry.
Citations
More filters
Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations

Journal ArticleDOI
TL;DR: The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
Abstract: Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

2,790 citations

Journal ArticleDOI
TL;DR: This review summarizes both the seminal early work and the exciting recent developments in the area of palladium-catalyzed couplings of aryl chlorides.
Abstract: Collectively, palladium-catalyzed coupling reactions represent some of the most powerful and versatile tools available to synthetic organic chemists. Their widespread popularity stems in part from the fact that they are generally tolerant to a large number of functional groups, which allows them to be employed in a wide range of applications. However, for many years a major limitation of palladium-catalyzed coupling processes has been the poor reactivity of aryl chlorides, which from the standpoints of cost and availability are more attractive substrates than the corresponding bromides, iodides, and triflates. Traditional palladium/triarylphosphane catalysts are only effective for the coupling of certain activated aryl chlorides (for example, heteroaryl chlorides and substrates that bear electron-withdrawing groups), but not for aryl chlorides in general. Since 1998, major advances have been described by a number of research groups addressing this challenge; catalysts based on bulky, electron-rich phosphanes and carbenes have proved to be particularly mild and versatile. This review summarizes both the seminal early work and the exciting recent developments in the area of palladium-catalyzed couplings of aryl chlorides.

2,377 citations


Cites background from "Applied Homogeneous Catalysis with ..."

  • ...[205] For reviews on carbonylation, see a) M....

    [...]

  • ...(52) and Scheme 7).[205] From a historical perspective, some of the earliest studies of the activation of aryl chlorides focused on carbonylation processes....

    [...]

Journal ArticleDOI
TL;DR: The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies, and asymmetric hydrogenation utilizing molecular hydrogen to reduce prochiral olefins, ketones, and imines has become one of the most efficient methods for constructing chiral compounds.
Abstract: The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies.1,2 Among all asymmetric catalytic methods, asymmetric hydrogenation utilizing molecular hydrogen to reduce prochiral olefins, ketones, and imines, have become one of the most efficient methods for constructing chiral compounds.3 The development of homogeneous asymmetric hydrogenation was initiated by Knowles4a and Horner4b in the late 1960s, after the discovery of Wilkinson’s homogeneous hydrogenation catalyst [RhCl(PPh3)3]. By replacing triphenylphosphine of the Wilkinson’s catalystwithresolvedchiralmonophosphines,6Knowles and Horner reported the earliest examples of enantioselective hydrogenation, albeit with poor enantioselectivity. Further exploration by Knowles with an improved monophosphine CAMP provided 88% ee in hydrogenation of dehydroamino acids.7 Later, two breakthroughs were made in asymmetric hydrogenation by Kagan and Knowles, respectively. Kagan reported the first bisphosphine ligand, DIOP, for Rhcatalyzed asymmetric hydrogenation.8 The successful application of DIOP resulted in several significant directions for ligand design in asymmetric hydrogenation. Chelating bisphosphorus ligands could lead to superior enantioselectivity compared to monodentate phosphines. Additionally, P-chiral phosphorus ligands were not necessary for achieving high enantioselectivity, and ligands with backbone chirality could also provide excellent ee’s in asymmetric hydrogenation. Furthermore, C2 symmetry was an important structural feature for developing new efficient chiral ligands. Kagan’s seminal work immediately led to the rapid development of chiral bisphosphorus ligands. Knowles made his significant discovery of a C2-symmetric chelating bisphosphine ligand, DIPAMP.9 Due to its high catalytic efficiency in Rh-catalyzed asymmetric hydrogenation of dehydroamino acids, DIPAMP was quickly employed in the industrial production of L-DOPA.10 The success of practical synthesis of L-DOPA via asymmetric hydrogenation constituted a milestone work and for this work Knowles was awarded the Nobel Prize in 2001.3k This work has enlightened chemists to realize * Corresponding author. 3029 Chem. Rev. 2003, 103, 3029−3069

1,995 citations