scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors collected audiovisual recordings of secondary school classes over a one and a half month period, acquired continuous engagement labeling per student (N=15) in repeated sessions, and explored computer vision methods to classify engagement from facial videos.
Abstract: Student engagement is a key component of learning and teaching, resulting in a plethora of automated methods to measure it. Whereas most of the literature explores student engagement analysis using computer-based learning often in the lab, we focus on using classroom instruction in authentic learning environments. We collected audiovisual recordings of secondary school classes over a one and a half month period, acquired continuous engagement labeling per student (N=15) in repeated sessions, and explored computer vision methods to classify engagement from facial videos. We learned deep embeddings for attentional and affective features by training Attention-Net for head pose estimation and Affect-Net for facial expression recognition using previously-collected large-scale datasets. We used these representations to train engagement classifiers on our data, in individual and multiple channel settings, considering temporal dependencies. The best performing engagement classifiers achieved student-independent AUCs of .620 and .720 for grades 8 and 12, respectively, with attention-based features outperforming affective features. Score-level fusion either improved the engagement classifiers or was on par with the best performing modality. We also investigated the effect of personalization and found that only 60 seconds of person-specific data, selected by margin uncertainty of the base classifier, yielded an average AUC improvement of .084.

13 citations

Proceedings ArticleDOI
01 Mar 2020
TL;DR: This paper proposes Deep Position-Aware Hashing (DPAH) to ensure continuous semantic similarity in Hamming space by modeling global positional relationship and introduces a set of learnable class centers as the global proxies to represent the global information and generate discriminative binary codes by constraining the distance between data points and class centers.
Abstract: Preserving the semantic similarity is one of the most important goals of hashing. Most existing deep hashing methods employ pairs or triplets of samples in training stage, which only consider the semantic similarity within a minibatch and depict the local positional relationship in Hamming space, leading to intermittent semantic similarity preservation. In this paper, we propose Deep Position-Aware Hashing (DPAH) to ensure continuous semantic similarity in Hamming space by modeling global positional relationship. Specifically, we introduce a set of learnable class centers as the global proxies to represent the global information and generate discriminative binary codes by constraining the distance between data points and class centers. In addition, in order to reduce the information loss caused by relaxing the binary codes to real-values in optimization, we propose kurtosis loss (KT loss) to handle the distribution of real-valued features before thresholding to be double-peak, and then enable the real-valued features to be more binarylike. Comprehensive experiments on three datasets show that our DPAH outperforms state-of-the-art methods.

13 citations


Cites methods from "ArcFace: Additive Angular Margin Lo..."

  • ...Different from point-wise metric learning methods [42, 26, 10], our DPAH unifies single-label retrieval and multi-label retrieval in one formulation and shows distinctive superiority in multi-label scenarios, which is verified in later experiment section....

    [...]

Posted Content
TL;DR: A new self-supervised adversarial defense framework, namely FaceGuard, that can automatically detect, localize, and purify a wide variety of adversarial faces without utilizing pre-computed adversarial training samples is proposed.
Abstract: Prevailing defense mechanisms against adversarial face images tend to overfit to the adversarial perturbations in the training set and fail to generalize to unseen adversarial attacks. We propose a new self-supervised adversarial defense framework, namely FaceGuard, that can automatically detect, localize, and purify a wide variety of adversarial faces without utilizing pre-computed adversarial training samples. During training, FaceGuard automatically synthesizes challenging and diverse adversarial attacks, enabling a classifier to learn to distinguish them from real faces and a purifier attempts to remove the adversarial perturbations in the image space. Experimental results on LFW dataset show that FaceGuard can achieve 99.81% detection accuracy on six unseen adversarial attack types. In addition, the proposed method can enhance the face recognition performance of ArcFace from 34.27% TAR @ 0.1% FAR under no defense to 77.46% TAR @ 0.1% FAR.

13 citations

Posted Content
TL;DR: The CN-Celeb dataset as mentioned in this paper contains more than 130,000 utterances from 1,000 Chinese celebrities, and covers 11 different genres in real world, and experiments conducted with two state-of-the-art speaker recognition approaches (i-vector and x-vector) show that the performance of these approaches is far inferior to the one obtained on VoxCeleb, a widely used speaker recognition dataset.
Abstract: Recently, researchers set an ambitious goal of conducting speaker recognition in unconstrained conditions where the variations on ambient, channel and emotion could be arbitrary. However, most publicly available datasets are collected under constrained environments, i.e., with little noise and limited channel variation. These datasets tend to deliver over optimistic performance and do not meet the request of research on speaker recognition in unconstrained conditions. In this paper, we present CN-Celeb, a large-scale speaker recognition dataset collected `in the wild'. This dataset contains more than 130,000 utterances from 1,000 Chinese celebrities, and covers 11 different genres in real world. Experiments conducted with two state-of-the-art speaker recognition approaches (i-vector and x-vector) show that the performance on CN-Celeb is far inferior to the one obtained on VoxCeleb, a widely used speaker recognition dataset. This result demonstrates that in real-life conditions, the performance of existing techniques might be much worse than it was thought. Our database is free for researchers and can be downloaded from this http URL.

13 citations

Journal ArticleDOI
TL;DR: In this paper , a compositional vector-quantized variational autoencoder (VQ-VAE) is proposed to generate 3D holistic body motions from human speech.
Abstract: This work addresses the problem of generating 3D holistic body motions from human speech. Given a speech recording, we synthesize sequences of 3D body poses, hand gestures, and facial expressions that are realistic and diverse. To achieve this, we first build a high-quality dataset of 3D holistic body meshes with synchronous speech. We then define a novel speech-to-motion generation framework in which the face, body, and hands are modeled separately. The separated modeling stems from the fact that face articulation strongly correlates with human speech, while body poses and hand gestures are less correlated. Specifically, we employ an autoencoder for face motions, and a compositional vector-quantized variational autoencoder (VQ-VAE) for the body and hand motions. The compositional VQ-VAE is key to generating diverse results. Additionally, we propose a cross-conditional autoregressive model that generates body poses and hand gestures, leading to coherent and realistic motions. Extensive experiments and user studies demonstrate that our proposed approach achieves state-of-the-art performance both qualitatively and quantitatively. Our novel dataset and code will be released for research purposes at https://talkshow.is.tue.mpg.de.

13 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations