scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: Zhang et al. as mentioned in this paper proposed a reinforcement learning based race balance network (RL-RBN) to learn balanced performance for different races based on large margin losses and formulated the process of finding the optimal margins for non-Caucasians as a Markov decision process and employed deep Q-learning to learn policies for an agent to select appropriate margin by approximating the Q-value function.
Abstract: Racial equality is an important theme of international human rights law, but it has been largely obscured when the overall face recognition accuracy is pursued blindly. More facts indicate racial bias indeed degrades the fairness of recognition system and the error rates on non-Caucasians are usually much higher than Caucasians. To encourage fairness, we introduce the idea of adaptive margin to learn balanced performance for different races based on large margin losses. A reinforcement learning based race balance network (RL-RBN) is proposed. We formulate the process of finding the optimal margins for non-Caucasians as a Markov decision process and employ deep Q-learning to learn policies for an agent to select appropriate margin by approximating the Q-value function. Guided by the agent, the skewness of feature scatter between races can be reduced. Besides, we provide two ethnicity aware training datasets, called BUPT-Globalface and BUPT-Balancedface dataset, which can be utilized to study racial bias from both data and algorithm aspects. Extensive experiments on RFW database show that RL-RBN successfully mitigates racial bias and learns more balanced performance.

108 citations

Journal ArticleDOI
18 Feb 2020
TL;DR: Using two different deep convolutional neural network face matchers, it is shown that for a fixed decision threshold, the African-American image cohort has a higher false match rate (FMR), and the Caucasian cohort hasA higher false nonmatch rate.
Abstract: Face recognition technology has recently become controversial over concerns about possible bias due to accuracy varying based on race or skin tone. We explore three important aspects of face recognition technology related to this controversy. Using two different deep convolutional neural network face matchers, we show that for a fixed decision threshold, the African-American image cohort has a higher false match rate (FMR), and the Caucasian cohort has a higher false nonmatch rate. We present an analysis of the impostor distribution designed to test the premise that darker skin tone causes a higher FMR, and find no clear evidence to support this premise. Finally, we explore how using face recognition for one-to-many identification can have a very low false-negative identification rate and still present concerns related to the false-positive identification rate. Both the ArcFace and VGGFace2 matchers and the MORPH dataset used in our experiments are available to the research community so that others should be able to reproduce or reanalyze our results.

108 citations


Cites methods from "ArcFace: Additive Angular Margin Lo..."

  • ...ArcFace [13] is based on the ResNet-100 architecture [25], trained with the MS1M V2 dataset (a cleaned version of the MS-Celeb-1M dataset [24]), using additive angular margin loss....

    [...]

Posted Content
TL;DR: This paper addresses a methodology to use the current facial datasets by augmenting it with tools that enable masks to be recognized with low false-positive rates and high overall accuracy, without requiring the user dataset to be recreated by taking new pictures for authentication.
Abstract: With the recent world-wide COVID-19 pandemic, using face masks have become an important part of our lives. People are encouraged to cover their faces when in public area to avoid the spread of infection. The use of these face masks has raised a serious question on the accuracy of the facial recognition system used for tracking school/office attendance and to unlock phones. Many organizations use facial recognition as a means of authentication and have already developed the necessary datasets in-house to be able to deploy such a system. Unfortunately, masked faces make it difficult to be detected and recognized, thereby threatening to make the in-house datasets invalid and making such facial recognition systems inoperable. This paper addresses a methodology to use the current facial datasets by augmenting it with tools that enable masked faces to be recognized with low false-positive rates and high overall accuracy, without requiring the user dataset to be recreated by taking new pictures for authentication. We present an open-source tool, MaskTheFace to mask faces effectively creating a large dataset of masked faces. The dataset generated with this tool is then used towards training an effective facial recognition system with target accuracy for masked faces. We report an increase of 38% in the true positive rate for the Facenet system. We also test the accuracy of re-trained system on a custom real-world dataset MFR2 and report similar accuracy.

107 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...Modern deep learning based face recognition systems have proven superior accuracy [3]–[7]....

    [...]

Book ChapterDOI
23 Aug 2020
TL;DR: Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation and improves the performance over the state-of-the-art, especially for larger-scale datasets, thus demonstrating the effectiveness and scalability of Smooth-AP to real-world scenarios.
Abstract: Optimising a ranking-based metric, such as Average Precision (AP), is notoriously challenging due to the fact that it is non-differentiable, and hence cannot be optimised directly using gradient-descent methods. To this end, we introduce an objective that optimises instead a smoothed approximation of AP, coined Smooth-AP. Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation. We also present an analysis for why directly optimising the ranking based metric of AP offers benefits over other deep metric learning losses.

105 citations


Cites background or methods from "ArcFace: Additive Angular Margin Lo..."

  • ...Triplet 0.880 0.787 +Smooth-AP 0.902 0.803 tuning and so provide ideal test environments to demonstrate improved image retrieval techniques. 6.3 Evaluation on Face Retrieval Due to impressive results [7,14], face retrieval is considered saturated. Nevertheless, we demonstrate here that Smooth-AP can further boost the face retrieval performance. Specically, we append Smooth-AP on top of modern methods (...

    [...]

  • ...f images for the task of image retrieval. We show large performance gains over all recently proposed AP approximating approaches and, somewhat surprisingly, also outperform strong verication systems [14,36] by a signicant margin, reecting the fact that metric learning approaches are indeed inecient for training large-scale retrieval systems that are measured by global ranking metrics. 2 Related Work A...

    [...]

  • ...ection 6.4). Face retrieval datasets (VGGFace2, IJB-C). We use two high performing face verication networks: the method from [7] using the SENet-50 architecture [27] and the state-of-the-art ArcFace [14] (using ResNet-50), both trained on the VGGFace2 training set. For SENet-50, we follow [7] and use the same face crops (extended by the recommended amount), resized to 224 224 and we L2-normalize the ...

    [...]

Proceedings ArticleDOI
TL;DR: In this article, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins.
Abstract: In this paper, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins The necessity to fine-tune these networks to predict facial expressions is highlighted Several models are presented based on MobileNet, EfficientNet and RexNet architectures It was experimentally demonstrated that they lead to near state-of-the-art results in age, gender and race recognition on the UTKFace dataset and emotion classification on the AffectNet dataset Moreover, it is shown that the usage of the trained models as feature extractors of facial regions in video frames leads to 45% higher accuracy than the previously known state-of-the-art single models for the AFEW and the VGAF datasets from the EmotiW challenges The models and source code are publicly available at this https URL

105 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations