scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: IsoMax loss as discussed by the authors replaces SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses, which is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions.
Abstract: In this article, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy On the one hand, current OOD detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it Unfortunately, those methods usually produce undesired side effects (eg, classification accuracy drop, additional hyperparameters, slower inferences, and collecting extra data) On the other hand, we propose replacing SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses The proposed IsoMax loss is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions Replacing the SoftMax loss by IsoMax loss requires no model or training changes Additionally, the models trained with IsoMax loss produce as fast and energy-efficient inferences as those trained using SoftMax loss Moreover, no classification accuracy drop is observed The proposed method does not rely on outlier/background data, hyperparameter tuning, temperature calibration, feature extraction, metric learning, adversarial training, ensemble procedures, or generative models Our experiments showed that IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks' OOD detection performance Hence, it may be used as a baseline OOD detection approach to be combined with current or future OOD detection techniques to achieve even higher results

7 citations

Proceedings ArticleDOI
12 Oct 2020
TL;DR: A novel multimodal feature fusion method based on scene segmentation to detect the relationships between entities in a long duration video to perform well for deep video understanding on the HLVU dataset.
Abstract: In this paper, we propose a novel multimodal feature fusion method based on scene segmentation to detect the relationships between entities in a long duration video. Specifically, a long video is split into some scenes and entities in the scenes are tracked. Text, audio and visual features in a scene are extracted to predict relationships between different entities in the scene. The relationships between entities construct a knowledge graph of the video and can be used to answer some queries about the video. The experimental results show that our method performs well for deep video understanding on the HLVU dataset.

7 citations


Cites methods from "ArcFace: Additive Angular Margin Lo..."

  • ...We use InsightFace [4], which detects faces with MTCNN and then match them with the provided images of person entities by ArcFace [3], which puts forward additive angular margin loss for deep face recognition, to recognize all faces appeared in the movie....

    [...]

Journal ArticleDOI
29 Apr 2021-Sensors
TL;DR: Deep supervised video hashing (DSVH) as mentioned in this paper employs a 3D convolutional neural network (CNN) to obtain spatial-temporal features of videos, then train a set of hash functions by supervised hashing to transfer the video features into binary space and get the compact binary codes of videos.
Abstract: Recently, with the popularization of camera tools such as mobile phones and the rise of various short video platforms, a lot of videos are being uploaded to the Internet at all times, for which a video retrieval system with fast retrieval speed and high precision is very necessary. Therefore, content-based video retrieval (CBVR) has aroused the interest of many researchers. A typical CBVR system mainly contains the following two essential parts: video feature extraction and similarity comparison. Feature extraction of video is very challenging, previous video retrieval methods are mostly based on extracting features from single video frames, while resulting the loss of temporal information in the videos. Hashing methods are extensively used in multimedia information retrieval due to its retrieval efficiency, but most of them are currently only applied to image retrieval. In order to solve these problems in video retrieval, we build an end-to-end framework called deep supervised video hashing (DSVH), which employs a 3D convolutional neural network (CNN) to obtain spatial-temporal features of videos, then train a set of hash functions by supervised hashing to transfer the video features into binary space and get the compact binary codes of videos. Finally, we use triplet loss for network training. We conduct a lot of experiments on three public video datasets UCF-101, JHMDB and HMDB-51, and the results show that the proposed method has advantages over many state-of-the-art video retrieval methods. Compared with the DVH method, the mAP value of UCF-101 dataset is improved by 9.3%, and the minimum improvement on JHMDB dataset is also increased by 0.3%. At the same time, we also demonstrate the stability of the algorithm in the HMDB-51 dataset.

7 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a feature compactness loss for person search, which efficiently improves the inter-class discrimination and intra-class compactness of pedestrian features embedding without the need for positive or negative pairs.
Abstract: Person search aims to locate and retrieve specific pedestrians in scene images, including two subtasks, pedestrian detection and person re-identification. Recently, triplet loss has been widely used in person re-identification, which effectively improves the pedestrian features embedding and achieves superior performance. However, forming triplet in the person search is not an easy task. Most of the existing end-to-end person search methods are based on Faster R-CNN. The training process of person re-identification part is affected by the detector. It is difficult to form pedestrian triplets within a limited batch size. Also, there are many pedestrian identities in the person search dataset, but each pedestrian identity only has a few samples. It is difficult to learn a robust pedestrian feature representation for person search. To resolve the problem discussed above, a novel Feature Compactness (FC) Loss for the person search is designed, which efficiently improves the inter-class discrimination and intra-class compactness of pedestrian features embedding without the need for positive or negative pairs. Besides, we propose a pedestrian attention module (PAM) to help the network focuses more on pedestrian information and suppresses irrelevant background information. Our method achieves comparable performance on two benchmarks, CUHK-SYSU and PRW, and achieves 91.96% of mAP and 93.34% of rank1 accuracy on CUHK-SYSU.

7 citations

Journal ArticleDOI
TL;DR: Nirkin et al. as discussed by the authors proposed a face swapping GAN (FSGAN) for face reenactment, which adjusts significant pose and expression variations that can be applied to a single image or a video sequence.
Abstract: We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, we offer a subject agnostic swapping scheme that can be applied to pairs of faces without requiring training on those faces. We derive a novel iterative deep learning–based approach for face reenactment which adjusts significant pose and expression variations that can be applied to a single image or a video sequence. For video sequences, we introduce a continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving the target skin color and lighting conditions. This network uses a novel Poisson blending loss combining Poisson optimization with a perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior. This work describes extensions of the FSGAN method, proposed in an earlier conference version of our work (Nirkin et al. 2019), as well as additional experiments and results.

7 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations